Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Schnetpack | 638 | 1 | 2 | 7 days ago | 4 | October 12, 2021 | 6 | other | Python | |
SchNetPack - Deep Neural Networks for Atomistic Systems | ||||||||||
Nequip | 416 | a month ago | 2 | June 21, 2022 | 15 | mit | Python | |||
NequIP is a code for building E(3)-equivariant interatomic potentials | ||||||||||
Torchmd | 391 | 1 | 2 months ago | 2 | October 22, 2020 | 6 | mit | Python | ||
End-To-End Molecular Dynamics (MD) Engine using PyTorch | ||||||||||
Gpumd | 237 | 14 hours ago | 13 | gpl-3.0 | Cuda | |||||
Graphics Processing Units Molecular Dynamics | ||||||||||
Tensormol | 190 | 5 years ago | 1 | November 08, 2017 | 16 | gpl-3.0 | Python | |||
Tensorflow + Molecules = TensorMol | ||||||||||
Allegro | 169 | 5 months ago | mit | Python | ||||||
Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic potentials | ||||||||||
Sgdml | 124 | a month ago | 10 | mit | Python | |||||
sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model | ||||||||||
Nnpops | 60 | 2 months ago | 1 | March 15, 2022 | 24 | other | C++ | |||
High-performance operations for neural network potentials | ||||||||||
Gdynet | 47 | 2 years ago | 1 | mit | Jupyter Notebook | |||||
Unsupervised learning of atomic scale dynamics from molecular dynamics. | ||||||||||
Uf3 | 40 | 3 days ago | 20 | apache-2.0 | Python | |||||
UF3: a python library for generating ultra-fast interatomic potentials |
GPUMD
GPUMD
?GPUMD
stands for Graphics Processing Units Molecular Dynamics. It is a general-purpose molecular dynamics (MD) code fully implemented on graphics processing units (GPUs).CUDA
toolkit no older than CUDA
9.0.src
directory and type make
. When the compilation finishes, two executables, gpumd
and nep
, will be generated in the src
directory.path/to/gpumd
path/to/nep
You can use the following link to subscribe and unsubscribe the mailing list: https://www.freelists.org/list/gpumd
To post a question, you can send an email to gpumd(at)freelists.org
Here is the archive (public): https://www.freelists.org/archive/gpumd/
Package | link |
---|---|
calorine |
https://gitlab.com/materials-modeling/calorine |
gpyumd |
AlexGabourie/gpyumd |
pynep |
bigd4/PyNEP |
somd |
initqp/somd |
Name | contact |
---|---|
Zheyong Fan | https://github.com/brucefan1983 |
Alexander J. Gabourie | https://github.com/AlexGabourie |
Ke Xu | https://github.com/Kick-H |
Ting Liang | https://github.com/Tingliangstu |
Jiahui Liu | https://github.com/Jonsnow-willow |
Penghua Ying | https://github.com/hityingph |
Real Name ? | https://github.com/Lazemare |
Real Name ? | https://github.com/initqp |
Yanzhou Wang | https://github.com/Yanzhou-Wang |
Rui Zhao | https://github.com/grtheaory |
Eric Lindgren | https://github.com/elindgren |
Junjie Wang | https://github.com/bigd4 |
Yong Wang | https://github.com/AmbroseWong |
Zhixin Liang | https://github.com/liangzhixin-202169 |
Paul Erhart | https://materialsmodeling.org/ |
Nan Xu | https://github.com/tamaswells |
Shunda Chen | https://github.com/shdchen |
Jiuyang Shi | https://github.com/XIX-YANG |
Nicklas Österbacka | https://github.com/NicklasOsterbacka |
Reference | cite for what? |
---|---|
[1] | for any work that used GPUMD
|
[2-3] | virial and heat current formulation |
[4] | in-out decomposition and related spectral decomposition |
[5] | HNEMD and related spectral decomposition |
[6] | force constant potential (FCP) |
[7-9] | neuroevolution potential (NEP) |
[10] | NEP + ZBL |
[1] Zheyong Fan, Wei Chen, Ville Vierimaa, and Ari Harju. Efficient molecular dynamics simulations with many-body potentials on graphics processing units, Computer Physics Communications 218, 10 (2017).
[2] Zheyong Fan, Luiz Felipe C. Pereira, Hui-Qiong Wang, Jin-Cheng Zheng, Davide Donadio, and Ari Harju. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations, Phys. Rev. B 92, 094301, (2015).
[3] Alexander J. Gabourie, Zheyong Fan, Tapio Ala-Nissila, Eric Pop, Spectral Decomposition of Thermal Conductivity: Comparing Velocity Decomposition Methods in Homogeneous Molecular Dynamics Simulations, Phys. Rev. B 103, 205421 (2021).
[4] Zheyong Fan, Luiz Felipe C. Pereira, Petri Hirvonen, Mikko M. Ervasti, Ken R. Elder, Davide Donadio, Tapio Ala-Nissila, and Ari Harju. Thermal conductivity decomposition in two-dimensional materials: Application to graphene, Phys. Rev. B 95, 144309, (2017).
[5] Zheyong Fan, Haikuan Dong, Ari Harju, and Tapio Ala-Nissila, Homogeneous nonequilibrium molecular dynamics method for heat transport and spectral decomposition with many-body potentials, Phys. Rev. B 99, 064308 (2019).
[6] Joakim Brorsson, Arsalan Hashemi, Zheyong Fan, Erik Fransson, Fredrik Eriksson, Tapio Ala-Nissila, Arkady V. Krasheninnikov, Hannu-Pekka Komsa, Paul Erhart, Efficient calculation of the lattice thermal conductivity by atomistic simulations with ab-initio accuracy, Advanced Theory and Simulations 4, 2100217 (2021).
[7] Zheyong Fan, Zezhu Zeng, Cunzhi Zhang, Yanzhou Wang, Keke Song, Haikuan Dong, Yue Chen, and Tapio Ala-Nissila, Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport, Phys. Rev. B. 104, 104309 (2021).
[8] Zheyong Fan, Improving the accuracy of the neuroevolution machine learning potentials for multi-component systems, Journal of Physics: Condensed Matter 34 125902 (2022).
[9] Zheyong Fan, Yanzhou Wang, Penghua Ying, Keke Song, Junjie Wang, Yong Wang, Zezhu Zeng, Ke Xu, Eric Lindgren, J. Magnus Rahm, Alexander J. Gabourie, Jiahui Liu, Haikuan Dong, Jianyang Wu, Yue Chen, Zheng Zhong, Jian Sun, Paul Erhart, Yanjing Su, Tapio Ala-Nissila, GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations, The Journal of Chemical Physics 157, 114801 (2022).
[10] Jiahui Liu, Jesper Byggmästar, Zheyong Fan, Ping Qian, and Yanjing Su, Large-scale machine-learning molecular dynamics simulation of primary radiation damage in tungsten Phys. Rev. B 108, 054312 (2023).