Tensorflow

An Open Source Machine Learning Framework for Everyone
Alternatives To Tensorflow
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Tensorflow175,35832777a day ago46October 23, 20192,145apache-2.0C++
An Open Source Machine Learning Framework for Everyone
Transformers103,25864911a day ago91June 21, 2022750apache-2.0Python
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
Pytorch67,645146a day ago23August 10, 202212,240otherPython
Tensors and Dynamic neural networks in Python with strong GPU acceleration
Keras58,548330a day ago68May 13, 2022387apache-2.0Python
Deep Learning for humans
Cs Video Courses56,273
8 days ago17
List of Computer Science courses with video lectures.
Faceswap45,645
2 days ago27gpl-3.0Python
Deepfakes Software For All
D2l Zh44,160
13 days ago45March 25, 202234apache-2.0Python
《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被60多个国家的400多所大学用于教学。
Tensorflow Examples42,312
8 months ago218otherJupyter Notebook
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)
100 Days Of Ml Code40,344
3 months ago61mit
100 Days of ML Coding
Deepfacelab40,302
3 days ago534gpl-3.0Python
DeepFaceLab is the leading software for creating deepfakes.
Alternatives To Tensorflow
Select To Compare


Alternative Project Comparisons
Readme

Python PyPI DOI CII Best Practices OpenSSF Scorecard Fuzzing Status Fuzzing Status OSSRank Contributor Covenant TF Official Continuous TF Official Nightly

Documentation
Documentation

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML-powered applications.

TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization to conduct machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.

TensorFlow provides stable Python and C++ APIs, as well as non-guaranteed backward compatible API for other languages.

Keep up-to-date with release announcements and security updates by subscribing to [email protected]. See all the mailing lists.

Install

See the TensorFlow install guide for the pip package, to enable GPU support, use a Docker container, and build from source.

To install the current release, which includes support for CUDA-enabled GPU cards (Ubuntu and Windows):

$ pip install tensorflow

Other devices (DirectX and MacOS-metal) are supported using Device plugins.

A smaller CPU-only package is also available:

$ pip install tensorflow-cpu

To update TensorFlow to the latest version, add --upgrade flag to the above commands.

Nightly binaries are available for testing using the tf-nightly and tf-nightly-cpu packages on PyPi.

Try your first TensorFlow program

$ python
>>> import tensorflow as tf
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
b'Hello, TensorFlow!'

For more examples, see the TensorFlow tutorials.

Contribution guidelines

If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

We use GitHub issues for tracking requests and bugs, please see TensorFlow Forum for general questions and discussion, and please direct specific questions to Stack Overflow.

The TensorFlow project strives to abide by generally accepted best practices in open-source software development.

Patching guidelines

Follow these steps to patch a specific version of TensorFlow, for example, to apply fixes to bugs or security vulnerabilities:

  • Clone the TensorFlow repo and switch to the corresponding branch for your desired TensorFlow version, for example, branch r2.8 for version 2.8.
  • Apply (that is, cherry pick) the desired changes and resolve any code conflicts.
  • Run TensorFlow tests and ensure they pass.
  • Build the TensorFlow pip package from source.

Continuous build status

You can find more community-supported platforms and configurations in the TensorFlow SIG Build community builds table.

Official Builds

Build Type Status Artifacts
Linux CPU Status PyPI
Linux GPU Status PyPI
Linux XLA Status TBA
macOS Status PyPI
Windows CPU Status PyPI
Windows GPU Status PyPI
Android Status Download
Raspberry Pi 0 and 1 Status Py3
Raspberry Pi 2 and 3 Status Py3
Libtensorflow MacOS CPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Linux CPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Linux GPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Windows CPU Status Temporarily Unavailable Nightly Binary Official GCS
Libtensorflow Windows GPU Status Temporarily Unavailable Nightly Binary Official GCS

Resources

Learn more about the TensorFlow community and how to contribute.

Courses

License

Apache License 2.0

Popular Machine Learning Projects
Popular Deep Learning Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
C Plus Plus
Machine Learning
Deep Learning
Tensorflow
Neural Network
Gpu
Cpu
Deep Neural Networks