Volumetric 3D Mapping in Real-Time on a CPU
Alternatives To Fastfusion
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Kimera Vio1,167
3 months ago58bsd-2-clauseC++
Visual Inertial Odometry with SLAM capabilities and 3D Mesh generation.
7 years ago23gpl-2.0C++
Volumetric 3D Mapping in Real-Time on a CPU
Kimera Semantics358
2 years ago11bsd-2-clauseC++
Real-Time 3D Semantic Reconstruction from 2D data
8 days ago13mitC++
A library containing utilities for mapping higher-level graphics work to D3D12
Cpu Cache Simulator13
7 years agoPython
A CPU cache simulator written in Python
Ustc Tmips6
6 years agootherVHDL
4 years agootherGo
A Progressive Photon Mapping implementation in Go, 图形学大作业
4 years agogpl-3.0G-code
An ESP32 Grbl board w/ Adduino R3 formfactor
8 years agogpl-2.0C++
5 months agoC++
iOS test app for CPU-side CoreGraphics UV texture mapping into a quad
Alternatives To Fastfusion
Select To Compare

Alternative Project Comparisons


Volumetric 3D Mapping in Real-Time on a CPU

This code implements the approach for real-time 3D mapping on a CPU as described in the following research paper:

Volumetric 3D Mapping in Real-Time on a CPU (F. Steinbruecker, J. Sturm, D. Cremers), In Int. Conf. on Robotics and Automation, 2014.

alt tag

Demo video:

@string{icra="Int. Conf. on Robotics and Automation"}
  author = {F. Steinbruecker and J. Sturm and D. Cremers},
  title = {Volumetric 3D Mapping in Real-Time on a CPU},
  booktitle = icra,
  year = {2014},
  address = {Hongkong, China},
  titleurl = {steinbruecker_etal_icra2014.pdf},
  topic = {3D Reconstruction},
  keywords =  {RGB-D,Fusion,3d-reconstruction}


$ git clone`

$ cd fastfusion

$ cmake .

$ make

Preparation of the data

The software takes a text file as input which contains per file

  • the camera pose
  • the depth image filename
  • the color image filename

You can either generate such a file yourself (e.g., by running Christan Kerl's DVO SLAM:

available as open source on our homepage) or you can download sequences from the TUM RGB-D benchmark:

For simplicity, we take a pre-recorded sequence from the TUM RGB-D benchmark.

$ mkdir ~/data

$ cd ~/data

$ wget

$ tar xvzf rgbd_dataset_freiburg3_long_office_household.tgz

Now we need to generate the text file. For this, we use the tool from the RGB-D benchmark website. We need to run it twice, as we join the camera poses, the depth image list and the color image list into a single file:

$ cd ~/fastfusion/

$ ./ ~/data/rgbd_dataset_freiburg3_long_office_household/groundtruth.txt ~/data/rgbd_dataset_freiburg3_long_office_household/depth.txt > tmp.txt

$ ./ tmp.txt ~/data/rgbd_dataset_freiburg3_long_office_household/rgb.txt > ~/data/rgbd_dataset_freiburg3_long_office_household/associate.txt

The resulting text file should look as follows:

$ head ~/data/rgbd_dataset_freiburg3_long_office_household/associate.txt
1341847980.790000 -0.6832 2.6909 1.7373 0.0003 0.8617 -0.5072 -0.0145 1341847980.786879 depth/1341847980.786879.png 1341847980.786856 rgb/1341847980.786856.png
1341847980.820100 -0.6821 2.6914 1.7371 0.0003 0.8609 -0.5085 -0.0151 1341847980.822989 depth/1341847980.822989.png 1341847980.822978 rgb/1341847980.822978.png
1341847980.850000 -0.6811 2.6918 1.7371 0.0001 0.8610 -0.5084 -0.0159 1341847980.854690 depth/1341847980.854690.png 1341847980.854676 rgb/1341847980.854676.png

Running the code

$ ./bin/onlinefusion ~/data/rgbd_dataset_freiburg3_long_office_household/associate.txt --thread-fusion

After some debugging output on the console, a window with a 3D viewer should open. To start the reconstruction process, press "S".

If you run the program for the first time, press and hold the CTRL key and turn your scroll wheel. This is only needed once to "free" the camera viewpoint. After this, you can pan (right click) and rotate (left click) the view as you wish using your mouse.

Further options

   ./bin/onlinefusion  [--intrinsics <string>] [--imagescale <float>]
                       [--threshold <float>] [--scale <float>]
                       [--max-camera-distance <float>]
                       [--consistency-checks <int>] [-k <int>] [-e <int>]
                       [-s <int>] [--incremental-meshing] [-c] [-b] [-v]
                       [--thread-image] [--thread-fusion]
                       [--thread-meshing] [-l <string>] [--] [--version]
                       [-h] <string> ...


   --intrinsics <string>
     File with Camera Matrix

   --imagescale <float>
     Image Depth Scale

   --threshold <float>

   --scale <float>
     Size of the Voxel

   --max-camera-distance <float>
     Maximum Camera Distance to Surface

   --consistency-checks <int>
     Number of Depth Consistency Checks

   -k <int>,  --imagestep <int>
     Use every kth step

   -e <int>,  --endimage <int>
     Number of the End Image

   -s <int>,  --startimage <int>
     Number of the Start Image

     Perform incremental Meshing

   -c,  --loopclosures
     Read Multiple Trajectories and perform Loop Closures

   -b,  --buffer
     Buffer all Images

   -v,  --viewer
     Show a Viewer after Fusion

     Thread reading the Images from Hard Disk

     Thread the Fusion inside the Viewer

     Thread the Meshing inside the Fusion

   -l <string>,  --loadmesh <string>
     Loads this mesh

   --,  --ignore_rest
     Ignores the rest of the labeled arguments following this flag.

     Displays version information and exits.

   -h,  --help
     Displays usage information and exits.

   <string>  (accepted multiple times)
     The File Names

alt tag

Popular Cpu Projects
Popular Mapping Projects
Popular Hardware Categories

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
C Plus Plus
Real Time