Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Labelme | 10,461 | 8 | 8 | 21 hours ago | 177 | March 03, 2022 | 71 | other | Python | |
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation). | ||||||||||
Segmentation_models.pytorch | 7,353 | 2 | 34 | a day ago | 10 | November 18, 2021 | 26 | mit | Python | |
Segmentation models with pretrained backbones. PyTorch. | ||||||||||
Paddleseg | 7,152 | 2 | 12 hours ago | 8 | April 20, 2022 | 273 | apache-2.0 | Python | ||
Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc. | ||||||||||
Pytorch Unet | 6,465 | 3 months ago | 49 | gpl-3.0 | Python | |||||
PyTorch implementation of the U-Net for image semantic segmentation with high quality images | ||||||||||
Mmsegmentation | 5,870 | 2 | 14 hours ago | 30 | July 01, 2022 | 417 | apache-2.0 | Jupyter Notebook | ||
OpenMMLab Semantic Segmentation Toolbox and Benchmark. | ||||||||||
Gluon Cv | 5,422 | 15 | 44 | 4 months ago | 1,514 | July 07, 2022 | 61 | apache-2.0 | Python | |
Gluon CV Toolkit | ||||||||||
Hrnet Semantic Segmentation | 2,714 | 7 months ago | 151 | other | Python | |||||
The OCR approach is rephrased as Segmentation Transformer: https://arxiv.org/abs/1909.11065. This is an official implementation of semantic segmentation for HRNet. https://arxiv.org/abs/1908.07919 | ||||||||||
Imgclsmob | 2,399 | 4 | a year ago | 67 | September 21, 2021 | 6 | mit | Python | ||
Sandbox for training deep learning networks | ||||||||||
Awesome Semantic Segmentation Pytorch | 2,399 | 5 months ago | 114 | apache-2.0 | Python | |||||
Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet) | ||||||||||
Semantic Segmentation Suite | 2,311 | 2 years ago | 83 | Python | ||||||
Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily! |
The source code of our work "Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation
./
├──
├── ...
└── path_to_data_shown_in_config/
├──sequences
├── 00/
│ ├── velodyne/
| | ├── 000000.bin
| | ├── 000001.bin
| | └── ...
│ └── labels/
| ├── 000000.label
| ├── 000001.label
| └── ...
├── 08/ # for validation
├── 11/ # 11-21 for testing
└── 21/
└── ...
./
├──
├── ...
└── path_to_data_shown_in_config/
├──v1.0-trainval
├──v1.0-test
├──samples
├──sweeps
├──maps
Please refer to NUSCENES-GUIDE
-- We provide a pretrained model for SemanticKITTI LINK1 or LINK2 (access code: xqmi)
-- For nuScenes dataset, please refer to NUSCENES-GUIDE
python demo_folder.py --demo-folder YOUR_FOLDER --save-folder YOUR_SAVE_FOLDER
If you want to validate with your own datasets, you need to provide labels. --demo-label-folder is optional
python demo_folder.py --demo-folder YOUR_FOLDER --save-folder YOUR_SAVE_FOLDER --demo-label-folder YOUR_LABEL_FOLDER
If you find our work useful in your research, please consider citing our paper:
@article{zhu2020cylindrical,
title={Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation},
author={Zhu, Xinge and Zhou, Hui and Wang, Tai and Hong, Fangzhou and Ma, Yuexin and Li, Wei and Li, Hongsheng and Lin, Dahua},
journal={arXiv preprint arXiv:2011.10033},
year={2020}
}
#for LiDAR panoptic segmentation
@article{hong2020lidar,
title={LiDAR-based Panoptic Segmentation via Dynamic Shifting Network},
author={Hong, Fangzhou and Zhou, Hui and Zhu, Xinge and Li, Hongsheng and Liu, Ziwei},
journal={arXiv preprint arXiv:2011.11964},
year={2020}
}