Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Labelme | 9,896 | 8 | 8 | 13 days ago | 177 | March 03, 2022 | 67 | other | Python | |
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation). | ||||||||||
Awesome Semantic Segmentation | 8,065 | 2 years ago | 13 | |||||||
:metal: awesome-semantic-segmentation | ||||||||||
Segmentation_models.pytorch | 6,982 | 2 | 34 | 2 days ago | 10 | November 18, 2021 | 26 | mit | Python | |
Segmentation models with pretrained backbones. PyTorch. | ||||||||||
Paddleseg | 6,653 | 2 | 2 days ago | 8 | April 20, 2022 | 185 | apache-2.0 | Python | ||
Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc. | ||||||||||
Pytorch Unet | 6,465 | 20 days ago | 49 | gpl-3.0 | Python | |||||
PyTorch implementation of the U-Net for image semantic segmentation with high quality images | ||||||||||
Mmsegmentation | 5,463 | 2 | a day ago | 30 | July 01, 2022 | 296 | apache-2.0 | Python | ||
OpenMMLab Semantic Segmentation Toolbox and Benchmark. | ||||||||||
Gluon Cv | 5,422 | 15 | 44 | 2 months ago | 1,514 | July 07, 2022 | 61 | apache-2.0 | Python | |
Gluon CV Toolkit | ||||||||||
Hrnet Semantic Segmentation | 2,714 | 4 months ago | 151 | other | Python | |||||
The OCR approach is rephrased as Segmentation Transformer: https://arxiv.org/abs/1909.11065. This is an official implementation of semantic segmentation for HRNet. https://arxiv.org/abs/1908.07919 | ||||||||||
Awesome Semantic Segmentation Pytorch | 2,399 | 3 months ago | 114 | apache-2.0 | Python | |||||
Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet) | ||||||||||
Imgclsmob | 2,399 | 4 | a year ago | 67 | September 21, 2021 | 6 | mit | Python | ||
Sandbox for training deep learning networks |
[2020/03/13] Our paper is accepted by TPAMI: Deep High-Resolution Representation Learning for Visual Recognition.
HRNet + OCR + SegFix: Rank #1 (84.5) in Cityscapes leaderboard. OCR: object contextual representations pdf. ***HRNet + OCR is reproduced here***.
Thanks Google and UIUC researchers. A modified HRNet combined with semantic and instance multi-scale context achieves SOTA panoptic segmentation result on the Mapillary Vista challenge. See the paper.
Small HRNet models for Cityscapes segmentation. Superior to MobileNetV2Plus ....
Rank #1 (83.7) in Cityscapes leaderboard. HRNet combined with an extension of object context
Pytorch-v1.1 and the official Sync-BN supported. We have reproduced the cityscapes results on the new codebase. Please check the pytorch-v1.1 branch.
This is the official code of high-resolution representations for Semantic Segmentation. We augment the HRNet with a very simple segmentation head shown in the figure below. We aggregate the output representations at four different resolutions, and then use a 1x1 convolutions to fuse these representations. The output representations is fed into the classifier. We evaluate our methods on three datasets, Cityscapes, PASCAL-Context and LIP.
HRNetV2 Segmentation models are now available. All the results are reproduced by using this repo!!!
The models are initialized by the weights pretrained on the ImageNet. You can download the pretrained models from HRNet/HRNet-Image-Classification.
model | Train Set | Test Set | #Params | GFLOPs | OHEM | Multi-scale | Flip | mIoU | Link |
---|---|---|---|---|---|---|---|---|---|
HRNetV2-W48 | Train | Val | 65.8M | 696.2 | No | No | No | 80.9 | OneDrive/BaiduYun(Access Code:tj7a) |
HRNetV2-W48 | Train | Val | 65.8M | 696.2 | Yes | No | No | 81.2 | OneDrive/BaiduYun(Access Code:794r) |
HRNetV2-W48 | Train | Test | 65.8M | 696.2 | No | Yes | Yes | 80.5 | OneDrive/BaiduYun(Access Code:tj7a) |
HRNetV2-W48 | Train | Test | 65.8M | 696.2 | Yes | Yes | Yes | 81.1 | OneDrive/BaiduYun(Access Code:794r) |
HRNetV2-W48 | TrainVal | Test | 65.8M | 696.2 | No | Yes | Yes | 81.5 | OneDrive/BaiduYun(Access Code:pbai) |
HRNetV2-W48 | TrainVal | Test | 65.8M | 696.2 | Yes | Yes | Yes | 81.9 | OneDrive/BaiduYun(Access Code:qett) |
model | #Params | GFLOPs | OHEM | Multi-scale | Flip | mIoU | Link |
---|---|---|---|---|---|---|---|
HRNetV2-W48 | 65.8M | 74.3 | No | No | Yes | 56.04 | OneDrive/BaiduYun(Access Code:mjw3) |
model | num classes | #Params | GFLOPs | OHEM | Multi-scale | Flip | mIoU | Link |
---|---|---|---|---|---|---|---|---|
HRNetV2-W48 | 59 classes | 65.8M | 76.5 | No | Yes | Yes | 54.1 | OneDrive/BaiduYun(Access Code:53fj) |
HRNetV2-W48 | 60 classes | 65.8M | 76.5 | No | Yes | Yes | 48.3 | OneDrive/BaiduYun(Access Code:9uf8) |
The models are initialized by the weights pretrained on the ImageNet. You can download the pretrained models from HRNet/HRNet-Image-Classification.
Performance on the Cityscapes dataset. The models are trained and tested with the input size of 512x1024 and 1024x2048 respectively. The results of other small models are obtained from Structured Knowledge Distillation for Semantic Segmentation(https://arxiv.org/abs/1903.04197). The small model are built based on the code of Pytorch-v1.1 branch.
model | Train Set | Test Set | #Params | GFLOPs | OHEM | Multi-scale | Flip | Distillation | mIoU | Link |
---|---|---|---|---|---|---|---|---|---|---|
SQ | Train | Val | - | - | No | No | No | No | 59.8 | |
CRF-RNN | Train | Val | - | - | No | No | No | No | 62.5 | |
Dilation10 | Train | Val | 140.8 | - | No | No | No | No | 67.1 | |
ICNet | Train | Val | - | - | No | No | No | No | 70.6 | |
ResNet18(1.0) | Train | Val | 15.2 | 477.6 | No | No | No | No | 69.1 | |
ResNet18(1.0) | Train | Val | 15.2 | 477.6 | No | No | No | Yes | 72.7 | |
MD(Enhanced) | Train | Val | 14.4 | 240.2 | No | No | No | No | 67.3 | |
MD(Enhanced) | Train | Val | 14.4 | 240.2 | No | No | No | Yes | 71.9 | |
MobileNetV2Plus | Train | Val | 8.3 | 320.9 | No | No | No | No | 70.1 | |
MobileNetV2Plus | Train | Val | 8.3 | 320.9 | No | No | No | Yes | 74.5 | |
HRNetV2-W18-Small-v1 | Train | Val | 1.5M | 31.1 | No | No | No | No | 70.3 | OneDrive/BaiduYun(Access Code:63be) |
HRNetV2-W18-Small-v2 | Train | Val | 3.9M | 71.6 | No | No | No | No | 76.2 | OneDrive/BaiduYun(Access Code:p1qf) |
If you want to train and evaluate our models on PASCAL-Context, you need to install details.
# PASCAL_CTX=/path/to/PASCAL-Context/
git clone https://github.com/zhanghang1989/detail-api.git $PASCAL_CTX
cd $PASCAL_CTX/PythonAPI
python setup.py install
You need to download the Cityscapes, LIP and PASCAL-Context datasets.
Your directory tree should be look like this:
$SEG_ROOT/data
├── cityscapes
│ ├── gtFine
│ │ ├── test
│ │ ├── train
│ │ └── val
│ └── leftImg8bit
│ ├── test
│ ├── train
│ └── val
├── lip
│ ├── TrainVal_images
│ │ ├── train_images
│ │ └── val_images
│ └── TrainVal_parsing_annotations
│ ├── train_segmentations
│ ├── train_segmentations_reversed
│ └── val_segmentations
├── pascal_ctx
│ ├── common
│ ├── PythonAPI
│ ├── res
│ └── VOCdevkit
│ └── VOC2010
├── list
│ ├── cityscapes
│ │ ├── test.lst
│ │ ├── trainval.lst
│ │ └── val.lst
│ ├── lip
│ │ ├── testvalList.txt
│ │ ├── trainList.txt
│ │ └── valList.txt
Please specify the configuration file.
For example, train the HRNet-W48 on Cityscapes with a batch size of 12 on 4 GPUs:
python tools/train.py --cfg experiments/cityscapes/seg_hrnet_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml
For example, evaluating our model on the Cityscapes validation set with multi-scale and flip testing:
python tools/test.py --cfg experiments/cityscapes/seg_hrnet_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml \
TEST.MODEL_FILE hrnet_w48_cityscapes_cls19_1024x2048_trainset.pth \
TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75 \
TEST.FLIP_TEST True
Evaluating our model on the Cityscapes test set with multi-scale and flip testing:
python tools/test.py --cfg experiments/cityscapes/seg_hrnet_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484.yaml \
DATASET.TEST_SET list/cityscapes/test.lst \
TEST.MODEL_FILE hrnet_w48_cityscapes_cls19_1024x2048_trainset.pth \
TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75 \
TEST.FLIP_TEST True
Evaluating our model on the PASCAL-Context validation set with multi-scale and flip testing:
python tools/test.py --cfg experiments/pascal_ctx/seg_hrnet_w48_cls59_480x480_sgd_lr4e-3_wd1e-4_bs_16_epoch200.yaml \
DATASET.TEST_SET testval \
TEST.MODEL_FILE hrnet_w48_pascal_context_cls59_480x480.pth \
TEST.SCALE_LIST 0.5,0.75,1.0,1.25,1.5,1.75,2.0 \
TEST.FLIP_TEST True
Evaluating our model on the LIP validation set with flip testing:
python tools/test.py --cfg experiments/lip/seg_hrnet_w48_473x473_sgd_lr7e-3_wd5e-4_bs_40_epoch150.yaml \
DATASET.TEST_SET list/lip/testvalList.txt \
TEST.MODEL_FILE hrnet_w48_lip_cls20_473x473.pth \
TEST.FLIP_TEST True \
TEST.NUM_SAMPLES 0
If you find this work or code is helpful in your research, please cite:
@inproceedings{SunXLW19,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal = {TPAMI},
year={2019}
}
[1] Deep High-Resolution Representation Learning for Visual Recognition. Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, Bin Xiao. Accepted by TPAMI. download
We adopt sync-bn implemented by InplaceABN.
We adopt data precosessing on the PASCAL-Context dataset, implemented by PASCAL API.