Deep Learning and Reinforcement Learning Library for Scientists and Engineers
Alternatives To Tensorlayer
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Cs Video Courses56,273
10 days ago17
List of Computer Science courses with video lectures.
Ray25,9758019913 hours ago76June 09, 20222,886apache-2.0Python
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads.
Applied Ml24,242
16 days ago3mit
📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.
Annotated_deep_learning_paper_implementations22,4641a month ago76June 27, 202217mitJupyter Notebook
🧑‍🏫 59 Implementations/tutorials of deep learning papers with side-by-side notes 📝; including transformers (original, xl, switch, feedback, vit, ...), optimizers (adam, adabelief, ...), gans(cyclegan, stylegan2, ...), 🎮 reinforcement learning (ppo, dqn), capsnet, distillation, ... 🧠
D2l En18,092
2 days ago106otherPython
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 400 universities from 60 countries including Stanford, MIT, Harvard, and Cambridge.
Ml Agents14,8651214a day ago44April 01, 2022166otherC#
The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-source project that enables games and simulations to serve as environments for training intelligent agents using deep reinforcement learning and imitation learning.
Tensor2tensor13,70182118 days ago79June 17, 2020589apache-2.0Python
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Deep Learning Drizzle10,767
6 months ago6HTML
Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures!!
Tensorflow Tutorials8,644
2 years ago2mitJupyter Notebook
TensorFlow Tutorials with YouTube Videos
Amazon Sagemaker Examples8,461
12 hours ago797apache-2.0Jupyter Notebook
Example 📓 Jupyter notebooks that demonstrate how to build, train, and deploy machine learning models using 🧠 Amazon SageMaker.
Alternatives To Tensorlayer
Select To Compare

Alternative Project Comparisons

GitHub last commit (branch) Supported TF Version Documentation Status Build Status Downloads Downloads Docker Pulls Codacy Badge

Please click TensorLayerX

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee.


  • TensorLayerX is a Unified Deep Learning and Reinforcement Learning Framework for All Hardwares, Backends and OS. The current version supports TensorFlow, Pytorch, MindSpore, PaddlePaddle, OneFlow and Jittor as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend.
  • TensorLayer is now in OpenI
  • Reinforcement Learning Zoo: Low-level APIs for professional usage, High-level APIs for simple usage, and a corresponding Springer textbook
  • Sipeed Maxi-EMC: Run TensorLayer models on the low-cost AI chip (e.g., K210) (Alpha Version)

Design Features

TensorLayer is a new deep learning library designed with simplicity, flexibility and high-performance in mind.

  • Simplicity : TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
  • Flexibility : TensorLayer APIs are transparent and flexible, inspired by the emerging PyTorch library. Compared to the Keras abstraction, TensorLayer makes it much easier to build and train complex AI models.
  • Zero-cost Abstraction : Though simple to use, TensorLayer does not require you to make any compromise in the performance of TensorFlow (Check the following benchmark section for more details).

TensorLayer stands at a unique spot in the TensorFlow wrappers. Other wrappers like Keras and TFLearn hide many powerful features of TensorFlow and provide little support for writing custom AI models. Inspired by PyTorch, TensorLayer APIs are simple, flexible and Pythonic, making it easy to learn while being flexible enough to cope with complex AI tasks. TensorLayer has a fast-growing community. It has been used by researchers and engineers all over the world, including those from Peking University, Imperial College London, UC Berkeley, Carnegie Mellon University, Stanford University, and companies like Google, Microsoft, Alibaba, Tencent, Xiaomi, and Bloomberg.

Multilingual Documents

TensorLayer has extensive documentation for both beginners and professionals. The documentation is available in both English and Chinese.

English Documentation Chinese Documentation Chinese Book

If you want to try the experimental features on the the master branch, you can find the latest document here.

Extensive Examples

You can find a large collection of examples that use TensorLayer in here and the following space:

Getting Start

TensorLayer 2.0 relies on TensorFlow, numpy, and others. To use GPUs, CUDA and cuDNN are required.

Install TensorFlow:

pip3 install tensorflow-gpu==2.0.0-rc1 # TensorFlow GPU (version 2.0 RC1)
pip3 install tensorflow # CPU version

Install the stable release of TensorLayer:

pip3 install tensorlayer

Install the unstable development version of TensorLayer:

pip3 install git+https://github.com/tensorlayer/tensorlayer.git

If you want to install the additional dependencies, you can also run

pip3 install --upgrade tensorlayer[all]              # all additional dependencies
pip3 install --upgrade tensorlayer[extra]            # only the `extra` dependencies
pip3 install --upgrade tensorlayer[contrib_loggers]  # only the `contrib_loggers` dependencies

If you are TensorFlow 1.X users, you can use TensorLayer 1.11.0:

# For last stable version of TensorLayer 1.X
pip3 install --upgrade tensorlayer==1.11.0

Performance Benchmark

The following table shows the training speeds of VGG16 using TensorLayer and native TensorFlow on a TITAN Xp.

Mode Lib Data Format Max GPU Memory Usage(MB) Max CPU Memory Usage(MB) Avg CPU Memory Usage(MB) Runtime (sec)
AutoGraph TensorFlow 2.0 channel last 11833 2161 2136 74
TensorLayer 2.0 channel last 11833 2187 2169 76
Graph Keras channel last 8677 2580 2576 101
Eager TensorFlow 2.0 channel last 8723 2052 2024 97
TensorLayer 2.0 channel last 8723 2010 2007 95

Getting Involved

Please read the Contributor Guideline before submitting your PRs.

We suggest users to report bugs using Github issues. Users can also discuss how to use TensorLayer in the following slack channel.

Citing TensorLayer

If you find TensorLayer useful for your project, please cite the following papers

    author  = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
    journal = {ACM Multimedia},
    title   = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
    url     = {http://tensorlayer.org},
    year    = {2017}

  title={Tensorlayer 3.0: A Deep Learning Library Compatible With Multiple Backends},
  author={Lai, Cheng and Han, Jiarong and Dong, Hao},
  booktitle={2021 IEEE International Conference on Multimedia \& Expo Workshops (ICMEW)},
Popular Reinforcement Learning Projects
Popular Deep Learning Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Deep Learning
Artificial Intelligence
Neural Network
Reinforcement Learning
Object Detection
Tensorflow Tutorials