D2l En

Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 400 universities from 60 countries including Stanford, MIT, Harvard, and Cambridge.
Alternatives To D2l En
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
D2l Zh41,093
112 hours ago45March 25, 202224apache-2.0Python
Machine Learning For Software Engineers26,596
a month ago22cc-by-sa-4.0
A complete daily plan for studying to become a machine learning engineer.
Typescript Book18,960
24 days ago145otherTypeScript
:books: The definitive guide to TypeScript and possibly the best TypeScript book :book:. Free and Open Source 🌹
21 hours ago26May 19, 202298otherJupyter Notebook
The fastai book, published as Jupyter Notebooks
D2l En17,167
a day ago87otherPython
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 400 universities from 60 countries including Stanford, MIT, Harvard, and Cambridge.
Deep Learning With Python Notebooks16,438
2 months ago161mitJupyter Notebook
Jupyter notebooks for the code samples of the book "Deep Learning with Python"
Neural Networks And Deep Learning14,073
a month ago8Python
Code samples for my book "Neural Networks and Deep Learning"
Deep Learning With Tensorflow Book11,864
2 years ago78Jupyter Notebook
深度学习入门开源书,基于TensorFlow 2.0案例实战。Open source Deep Learning book, based on TensorFlow 2.0 framework.
Mit Deep Learning Book Pdf10,775
3 months ago10Java
MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville
Awesome Rl8,109
7 days ago4
Reinforcement learning resources curated
Alternatives To D2l En
Select To Compare

Alternative Project Comparisons

D2L.ai: Interactive Deep Learning Book with Multi-Framework Code, Math, and Discussions

Build Status

Book website | STAT 157 Course at UC Berkeley

The best way to understand deep learning is learning by doing.

This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code.

Our goal is to offer a resource that could

  1. be freely available for everyone;
  2. offer sufficient technical depth to provide a starting point on the path to actually becoming an applied machine learning scientist;
  3. include runnable code, showing readers how to solve problems in practice;
  4. allow for rapid updates, both by us and also by the community at large;
  5. be complemented by a forum for interactive discussion of technical details and to answer questions.

Universities Using D2L

Cool Papers Using D2L

  1. Descending through a Crowded Valley--Benchmarking Deep Learning Optimizers. R. Schmidt, F. Schneider, P. Hennig. International Conference on Machine Learning, 2021

  2. Universal Average-Case Optimality of Polyak Momentum. D. Scieur, F. Pedregosan. International Conference on Machine Learning, 2020

  3. 2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements. M. Słoński, M. Tekieli. Materials, 2020

  4. GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing. J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha, A. Zhang, H. Zhang, Z. Zhang, Z. Zhang, S. Zheng, and Y. Zhu. Journal of Machine Learning Research, 2020

  5. Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges. M. Alkinani, W. Khan, Q. Arshad. IEEE Access, 2020

  1. Diagnosing Parkinson by Using Deep Autoencoder Neural Network. U. Kose, O. Deperlioglu, J. Alzubi, B. Patrut. Deep Learning for Medical Decision Support Systems, 2020

  2. Deep Learning Architectures for Medical Diagnosis. U. Kose, O. Deperlioglu, J. Alzubi, B. Patrut. Deep Learning for Medical Decision Support Systems, 2020

  3. ControlVAE: Tuning, Analytical Properties, and Performance Analysis. H. Shao, Z. Xiao, S. Yao, D. Sun, A. Zhang, S. Liu, T. Abdelzaher.

  4. Potential, challenges and future directions for deep learning in prognostics and health management applications. O. Fink, Q. Wang, M. Svensén, P. Dersin, W-J. Lee, M. Ducoffe. Engineering Applications of Artificial Intelligence, 2020

  5. Learning User Representations with Hypercuboids for Recommender Systems. S. Zhang, H. Liu, A. Zhang, Y. Hu, C. Zhang, Y. Li, T. Zhu, S. He, W. Ou. ACM International Conference on Web Search and Data Mining, 2021

If you find this book useful, please star (★) this repository or cite this book using the following bibtex entry:

    title={Dive into Deep Learning},
    author={Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.},
    journal={arXiv preprint arXiv:2106.11342},


"In less than a decade, the AI revolution has swept from research labs to broad industries to every corner of our daily life. Dive into Deep Learning is an excellent text on deep learning and deserves attention from anyone who wants to learn why deep learning has ignited the AI revolution: the most powerful technology force of our time."

— Jensen Huang, Founder and CEO, NVIDIA

"This is a timely, fascinating book, providing with not only a comprehensive overview of deep learning principles but also detailed algorithms with hands-on programming code, and moreover, a state-of-the-art introduction to deep learning in computer vision and natural language processing. Dive into this book if you want to dive into deep learning!"

— Jiawei Han, Michael Aiken Chair Professor, University of Illinois at Urbana-Champaign

"This is a highly welcome addition to the machine learning literature, with a focus on hands-on experience implemented via the integration of Jupyter notebooks. Students of deep learning should find this invaluable to become proficient in this field."

— Bernhard Schölkopf, Director, Max Planck Institute for Intelligent Systems

Contributing (Learn How)

This open source book has benefited from pedagogical suggestions, typo corrections, and other improvements from community contributors. Your help is valuable for making the book better for everyone.

Dear D2L contributors, please email your GitHub ID and name to d2lbook.en AT gmail DOT com so your name will appear on the acknowledgments. Thanks.

License Summary

This open source book is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. See LICENSE file.

The sample and reference code within this open source book is made available under a modified MIT license. See the LICENSE-SAMPLECODE file.

Chinese version | Discuss and report issues | Code of conduct | Other Information

Popular Book Projects
Popular Deep Learning Projects
Popular Learning Resources Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Machine Learning
Deep Learning
Natural Language Processing
Data Science
Computer Vision
Reinforcement Learning
Recommender System
Gaussian Processes
Hyperparameter Optimization