Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Awesome Decision Tree Papers | 2,133 | 9 days ago | cc0-1.0 | Python | ||||||
A collection of research papers on decision, classification and regression trees with implementations. | ||||||||||
Chefboost | 388 | 4 days ago | 17 | February 16, 2022 | 3 | mit | Python | |||
A Lightweight Decision Tree Framework supporting regular algorithms: ID3, C4,5, CART, CHAID and Regression Trees; some advanced techniques: Gradient Boosting, Random Forest and Adaboost w/categorical features support for Python | ||||||||||
Yggdrasil Decision Forests | 298 | 3 days ago | 9 | apache-2.0 | C++ | |||||
A collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. | ||||||||||
Machine Learning For Beginner By Python3 | 225 | 3 years ago | 2 | mit | Python | |||||
为机器学习的入门者提供多种基于实例的sklearn、TensorFlow以及自编函数(AnFany)的ML算法程序。 | ||||||||||
Machinelearningwithme | 132 | a month ago | Python | |||||||
A repository contains more than 10 common statistical machine learning algorithm implementations. 常见机器学习算法原理与实现 | ||||||||||
Php Ml Study | 103 | 8 months ago | PHP | |||||||
This is a PHP-ML Chinese learning example | ||||||||||
Decision Trees For Ml | 27 | 3 years ago | mit | Jupyter Notebook | ||||||
Building Decision Trees From Scratch In Python | ||||||||||
Study | 11 | 4 days ago | mit | Jupyter Notebook | ||||||
Учебные материалы по курсам связанным с Машинным обучением, которые я читаю в УрФУ. Презентации, блокноты ipynb, ссылки | ||||||||||
Cartpole Q Learning | 10 | 6 years ago | mit | Python | ||||||
A cart pole balancing agent powered by Q-Learning. | ||||||||||
Cart | 8 | 5 years ago | Python | |||||||
Classification and Regression Trees (CART) in python from scratch. |
This project contains more than 10 common statistical machine learning algorithm implementations.
The Python version is 3.6. See requirements.txt
for each Python package version. You can install all packages with the following command:
pip install -r requirements.txt