Spacy

💫 Industrial-strength Natural Language Processing (NLP) in Python
Alternatives To Spacy
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Transformers112,668641,8696 hours ago114July 18, 2023865apache-2.0Python
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
D2l Zh48,2731115 days ago47December 15, 202248apache-2.0Python
《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。
Made With Ml34,217
4 days ago5May 15, 20194mitJupyter Notebook
Learn how to design, develop, deploy and iterate on production-grade ML applications.
Spacy27,2441,5331,1987 hours ago222July 07, 202394mitPython
💫 Industrial-strength Natural Language Processing (NLP) in Python
Applied Ml24,714
23 days ago3mit
📚 Papers & tech blogs by companies sharing their work on data science & machine learning in production.
Nlp Progress21,719
3 months ago51mitPython
Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.
D2l En19,251
6 hours ago2November 13, 202294otherPython
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 500 universities from 70 countries including Stanford, MIT, Harvard, and Cambridge.
Ai For Beginners17,350
25 days ago32mitJupyter Notebook
12 Weeks, 24 Lessons, AI for All!
Datasets17,2249540a day ago69July 31, 2023599apache-2.0Python
🤗 The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
Rasa17,046323311 hours ago341July 25, 2023128apache-2.0Python
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants
Alternatives To Spacy
Select To Compare


Alternative Project Comparisons
Readme

spaCy: Industrial-strength NLP

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products.

spaCy comes with pretrained pipelines and currently supports tokenization and training for 70+ languages. It features state-of-the-art speed and neural network models for tagging, parsing, named entity recognition, text classification and more, multi-task learning with pretrained transformers like BERT, as well as a production-ready training system and easy model packaging, deployment and workflow management. spaCy is commercial open-source software, released under the MIT license.

💫 Version 3.7 out now! Check out the release notes here.

tests Current Release Version pypi Version conda Version Python wheels Code style: black
PyPi downloads Conda downloads spaCy on Twitter

📖 Documentation

Documentation
⭐️ spaCy 101 New to spaCy? Here's everything you need to know!
📚 Usage Guides How to use spaCy and its features.
🚀 New in v3.0 New features, backwards incompatibilities and migration guide.
🪐 Project Templates End-to-end workflows you can clone, modify and run.
🎛 API Reference The detailed reference for spaCy's API.
📦 Models Download trained pipelines for spaCy.
🌌 Universe Plugins, extensions, demos and books from the spaCy ecosystem.
⚙️ spaCy VS Code Extension Additional tooling and features for working with spaCy's config files.
👩‍🏫 Online Course Learn spaCy in this free and interactive online course.
📺 Videos Our YouTube channel with video tutorials, talks and more.
🛠 Changelog Changes and version history.
💝 Contribute How to contribute to the spaCy project and code base.
spaCy Tailored Pipelines Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's core developers. Streamlined, production-ready, predictable and maintainable. Start by completing our 5-minute questionnaire to tell us what you need and we'll be in touch! Learn more →
spaCy Tailored Pipelines Bespoke advice for problem solving, strategy and analysis for applied NLP projects. Services include data strategy, code reviews, pipeline design and annotation coaching. Curious? Fill in our 5-minute questionnaire to tell us what you need and we'll be in touch! Learn more →

💬 Where to ask questions

The spaCy project is maintained by the spaCy team. Please understand that we won't be able to provide individual support via email. We also believe that help is much more valuable if it's shared publicly, so that more people can benefit from it.

Type Platforms
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests & Ideas GitHub Discussions
👩‍💻 Usage Questions GitHub Discussions · Stack Overflow
🗯 General Discussion GitHub Discussions

Features

  • Support for 70+ languages
  • Trained pipelines for different languages and tasks
  • Multi-task learning with pretrained transformers like BERT
  • Support for pretrained word vectors and embeddings
  • State-of-the-art speed
  • Production-ready training system
  • Linguistically-motivated tokenization
  • Components for named entity recognition, part-of-speech-tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking and more
  • Easily extensible with custom components and attributes
  • Support for custom models in PyTorch, TensorFlow and other frameworks
  • Built in visualizers for syntax and NER
  • Easy model packaging, deployment and workflow management
  • Robust, rigorously evaluated accuracy

📖 For more details, see the facts, figures and benchmarks.

⏳ Install spaCy

For detailed installation instructions, see the documentation.

  • Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
  • Python version: Python 3.7+ (only 64 bit)
  • Package managers: pip · conda (via conda-forge)

pip

Using pip, spaCy releases are available as source packages and binary wheels. Before you install spaCy and its dependencies, make sure that your pip, setuptools and wheel are up to date.

pip install -U pip setuptools wheel
pip install spacy

To install additional data tables for lemmatization and normalization you can run pip install spacy[lookups] or install spacy-lookups-data separately. The lookups package is needed to create blank models with lemmatization data, and to lemmatize in languages that don't yet come with pretrained models and aren't powered by third-party libraries.

When using pip it is generally recommended to install packages in a virtual environment to avoid modifying system state:

python -m venv .env
source .env/bin/activate
pip install -U pip setuptools wheel
pip install spacy

conda

You can also install spaCy from conda via the conda-forge channel. For the feedstock including the build recipe and configuration, check out this repository.

conda install -c conda-forge spacy

Updating spaCy

Some updates to spaCy may require downloading new statistical models. If you're running spaCy v2.0 or higher, you can use the validate command to check if your installed models are compatible and if not, print details on how to update them:

pip install -U spacy
python -m spacy validate

If you've trained your own models, keep in mind that your training and runtime inputs must match. After updating spaCy, we recommend retraining your models with the new version.

📖 For details on upgrading from spaCy 2.x to spaCy 3.x, see the migration guide.

📦 Download model packages

Trained pipelines for spaCy can be installed as Python packages. This means that they're a component of your application, just like any other module. Models can be installed using spaCy's download command, or manually by pointing pip to a path or URL.

Documentation
Available Pipelines Detailed pipeline descriptions, accuracy figures and benchmarks.
Models Documentation Detailed usage and installation instructions.
Training How to train your own pipelines on your data.
# Download best-matching version of specific model for your spaCy installation
python -m spacy download en_core_web_sm

# pip install .tar.gz archive or .whl from path or URL
pip install /Users/you/en_core_web_sm-3.0.0.tar.gz
pip install /Users/you/en_core_web_sm-3.0.0-py3-none-any.whl
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz

Loading and using models

To load a model, use spacy.load() with the model name or a path to the model data directory.

import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("This is a sentence.")

You can also import a model directly via its full name and then call its load() method with no arguments.

import spacy
import en_core_web_sm

nlp = en_core_web_sm.load()
doc = nlp("This is a sentence.")

📖 For more info and examples, check out the models documentation.

⚒ Compile from source

The other way to install spaCy is to clone its GitHub repository and build it from source. That is the common way if you want to make changes to the code base. You'll need to make sure that you have a development environment consisting of a Python distribution including header files, a compiler, pip, virtualenv and git installed. The compiler part is the trickiest. How to do that depends on your system.

Platform
Ubuntu Install system-level dependencies via apt-get: sudo apt-get install build-essential python-dev git .
Mac Install a recent version of XCode, including the so-called "Command Line Tools". macOS and OS X ship with Python and git preinstalled.
Windows Install a version of the Visual C++ Build Tools or Visual Studio Express that matches the version that was used to compile your Python interpreter.

For more details and instructions, see the documentation on compiling spaCy from source and the quickstart widget to get the right commands for your platform and Python version.

git clone https://github.com/explosion/spaCy
cd spaCy

python -m venv .env
source .env/bin/activate

# make sure you are using the latest pip
python -m pip install -U pip setuptools wheel

pip install -r requirements.txt
pip install --no-build-isolation --editable .

To install with extras:

pip install --no-build-isolation --editable .[lookups,cuda102]

🚦 Run tests

spaCy comes with an extensive test suite. In order to run the tests, you'll usually want to clone the repository and build spaCy from source. This will also install the required development dependencies and test utilities defined in the requirements.txt.

Alternatively, you can run pytest on the tests from within the installed spacy package. Don't forget to also install the test utilities via spaCy's requirements.txt:

pip install -r requirements.txt
python -m pytest --pyargs spacy
Popular Natural Language Processing Projects
Popular Machine Learning Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Machine Learning
Deep Learning
Artificial Intelligence
Ai
Nlp
Natural Language Processing
Neural Network
Data Science
Cython
Text Classification
Spacy
Named Entity Recognition
Nlp Library