Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Netdata | 66,143 | a day ago | 358 | gpl-3.0 | C | |||||
Monitor your servers, containers, and applications, in high-resolution and in real-time! | ||||||||||
Jina | 19,386 | 16 | 2 days ago | 2,453 | December 01, 2023 | 17 | apache-2.0 | Python | ||
☁️ Build multimodal AI applications with cloud-native stack | ||||||||||
Awesome Kubernetes | 14,349 | a month ago | 15 | other | Shell | |||||
A curated list for awesome kubernetes sources :ship::tada: | ||||||||||
Mlcourse.ai | 9,100 | 6 months ago | 4 | other | Python | |||||
Open Machine Learning Course | ||||||||||
Cog | 5,970 | 2 | 2 days ago | 58 | November 28, 2023 | 348 | apache-2.0 | Python | ||
Containers for machine learning | ||||||||||
Fate | 5,310 | 1 | 3 days ago | 33 | September 20, 2023 | 810 | apache-2.0 | Python | ||
An Industrial Grade Federated Learning Framework | ||||||||||
Pipeline | 4,158 | a year ago | 85 | July 18, 2017 | 1 | apache-2.0 | Jsonnet | |||
PipelineAI | ||||||||||
Deeplearningproject | 4,043 | 3 years ago | 3 | mit | HTML | |||||
An in-depth machine learning tutorial introducing readers to a whole machine learning pipeline from scratch. | ||||||||||
Orchest | 3,876 | 6 months ago | 19 | December 13, 2022 | 125 | apache-2.0 | TypeScript | |||
Build data pipelines, the easy way 🛠️ | ||||||||||
Eagleeye | 3,857 | 3 days ago | 28 | wtfpl | Python | |||||
Stalk your Friends. Find their Instagram, FB and Twitter Profiles using Image Recognition and Reverse Image Search. |
The collaboration platform for Machine Learning
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.
IMPORTANT: We are no longer supporting and updating this repository. We are still actively working on this project but on our main repo at GitLab.
MLReef is a ML/DL development platform containing four main sections:
Sign up & start experimenting in minutes.
To find out more about how MLReef can streamline your Machine Learning Development Lifecycle visit our homepage
Adding your params via argparse...
# Example params for a ResNet50 script
def process_arguments(args):
parser = argparse.ArgumentParser(description='ResNet50')
parser.add_argument('--input-path', action='store', help='path to directory of images')
parser.add_argument('--output-path', action='store', default='.', help='path to output metrics')
parser.add_argument('--height', action='store', default=224, help='height of images (int)')
parser.add_argument('--width', action='store', default=224,help='width of images (int)')
parser.add_argument('--channels', action='store', default=3, help='channels of images: 1 = grayscale, 3 = RGB ,'
'4=RGBA (int)')
parser.add_argument('--use-pretrained', action='store', default=True, help='use pretrained ResNet50 weights (bool)')
parser.add_argument('--epochs', action='store',default=5, help='number of epochs for training')
parser.add_argument('--batch-size', action='store', default=32, help='batch size fed to the neural network (int)')
parser.add_argument('--validation-split', action='store', default=.25, help='fraction of images to be used for '
'validation (float)')
parser.add_argument('--class-mode', action='store', default='binary', help='"categorical", "binary", "sparse",'
' "input", or None')
parser.add_argument('--learning-rate', action='store', default=0.0001,
help='learning rate of Adam Optimizer (float)'
'')
parser.add_argument('--loss', action='store', default='sparse_categorical_crossentropy', help='loss function used to'
' compile model')
params = vars(parser.parse_args(args))
return params
...and publishing your scripts gets you the following:
The MLReef ML components within the ML life cycle:
MLReef is our solution to a problem we share with countless other researchers and developers in the machine learning/deep learning universe: Training production-grade deep learning models is a tangled process. MLReef tracks and controls the process by associating code version control, research projects, performance metrics, and model provenance.
We designed MLReef on best data science practices combined with the knowleged gained from DevOps and a deep focus on collaboration.
To start developing, continue with the developer guide
The canonical source of MLReef where all development takes place is hosted on gitLab.com/mlreef/mlreef.
MIT License (see the License for more information)
More information in the official documentation and on Youtube.
For examples and use cases, check these use cases or start the tutorial after registring:
If you have any questions: post on our Slack channel, or tag your questions on stackoverflow with 'mlreef' tag.
For feature requests or bug reports, please use GitLab issues.
Additionally, you can always reach out to us via [email protected]
Merge Requests are always welcomed ❤️ See more details in the MLReef Contribution Guidelines.