Neural Collaborative Filtering

pytorch version of neural collaborative filtering
Alternatives To Neural Collaborative Filtering
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
9 months ago51apache-2.0Python
Neural Collaborative Filtering
3 years ago27mitJupyter Notebook
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
2 years ago1November 04, 201915Python
Next RecSys Library
3 years ago33mitPython
Neural Graph Collaborative Filtering, SIGIR2019
Neural Collaborative Filtering312
4 years ago5Jupyter Notebook
pytorch version of neural collaborative filtering
Beta Recsys145
5 months ago6February 28, 202119mitPython
Beta-RecSys: Build, Evaluate and Tune Automated Recommender Systems
4 years agoPython
Experimental codes for paper "Outer Product-based Neural Collaborative Filtering".
3 years ago3Python
A pytorch implementation of He et al. "Neural Collaborative Filtering" at WWW'17
Cf Nade81
5 years ago3Python
A implementation of CF-NADE. Yin Zheng, et. al. "A Neural Autoregressive Approach to Collaborative Filtering", accepted by ICML 2016.
Chainer Graph Cnn65
5 years ago3mitPython
Chainer implementation of 'Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering' (
Alternatives To Neural Collaborative Filtering
Select To Compare

Alternative Project Comparisons


Neural collaborative filtering(NCF), is a deep learning based framework for making recommendations. The key idea is to learn the user-item interaction using neural networks. Check the follwing paper for details about NCF.

He, Xiangnan, et al. "Neural collaborative filtering." Proceedings of the 26th International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2017.

The authors of NCF actually published a nice implementation written in tensorflow(keras). This repo instead provides my implementation written in pytorch. I hope it would be helpful to pytorch fans. Have fun playing with it !


The Movielens 1M Dataset is used to test the repo.

Files prepare train/test dataset some handy functions for model training etc. evaluation metrics including hit ratio(HR) and NDCG generalized matrix factorization model multi-layer perceptron model fusion of gmf and mlp training engine entry point for train a NCF model


The hyper params are not tuned. Better performance can be achieved with careful tuning, especially for the MLP model. Pretraining the user embedding & item embedding might be helpful to improve the performance of the MLP model.

Experiments' results with num_negative_samples = 4 and dim_latent_factor=8 are shown as follows


Note that the MLP model was trained from scratch but the authors suggest that the performance might be boosted by pretrain the embedding layer with GMF model.

NeuMF pretrain V.S no pretrain

The pretrained version converges much faster.

L2 regularization for GMF model

Large l2 regularization might lead to the bug of HR=0.0 NDCG=0.0

L2 regularization for MLP model

a bit l2 regulzrization seems to improve the performance of the MLP model

L2 for MLP

MLP with pretrained user/item embedding

Pre-training the MLP model with user/item embedding from the trained GMF gives better result.

MLP network size = [16, 64, 32, 16, 8]

Pretrain for MLP Pretrain for MLP

Implicit feedback without pretrain

Ratings are set to 1 (interacted) or 0 (uninteracted). Train from scratch. binarize

Pytorch Versions

The repo works under torch 1.0. You can find the old versions working under torch 0.2 and 0.4 in tags.


  • Batchify the test data to handle large dataset.
Popular Filtering Projects
Popular Neural Projects
Popular Data Processing Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Deep Learning
Recommendation System
Collaborative Filtering
Matrix Factorization