Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Tidb | 34,149 | 68 | 101 | 9 hours ago | 1,289 | April 07, 2022 | 4,014 | apache-2.0 | Go | |
TiDB is an open-source, cloud-native, distributed, MySQL-Compatible database for elastic scale and real-time analytics. Try AI-powered Chat2Query free at : https://tidbcloud.com/free-trial | ||||||||||
Metabase | 32,610 | 16 hours ago | 1 | June 08, 2022 | 3,028 | other | Clojure | |||
The simplest, fastest way to get business intelligence and analytics to everyone in your company :yum: | ||||||||||
Dbeaver | 32,255 | 11 hours ago | 1,746 | apache-2.0 | Java | |||||
Free universal database tool and SQL client | ||||||||||
Prisma | 31,782 | 442 | 18 hours ago | 4,993 | September 24, 2022 | 2,920 | apache-2.0 | TypeScript | ||
Next-generation ORM for Node.js & TypeScript | PostgreSQL, MySQL, MariaDB, SQL Server, SQLite, MongoDB and CockroachDB | ||||||||||
Typeorm | 31,378 | 1,994 | 2,164 | 17 hours ago | 650 | September 20, 2022 | 1,972 | mit | TypeScript | |
ORM for TypeScript and JavaScript. Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms. | ||||||||||
Directus | 21,761 | 50 | 8 hours ago | 55 | September 22, 2022 | 229 | other | TypeScript | ||
The Modern Data Stack 🐰 — Directus is an instant REST+GraphQL API and intuitive no-code data collaboration app for any SQL database. | ||||||||||
Shardingsphere | 18,454 | 8 | 9 hours ago | 7 | June 04, 2020 | 666 | apache-2.0 | Java | ||
Ecosystem to transform any database into a distributed database system, and enhance it with sharding, elastic scaling, encryption features & more | ||||||||||
Mindsdb | 16,375 | 3 | 1 | 12 hours ago | 42 | March 19, 2019 | 627 | gpl-3.0 | Python | |
MindsDB is a Server for Artificial Intelligence Logic. Enabling developers to ship AI powered projects to production in a fast and scalable way. | ||||||||||
Vitess | 16,284 | 66 | 14 hours ago | 397 | September 01, 2022 | 833 | apache-2.0 | Go | ||
Vitess is a database clustering system for horizontal scaling of MySQL. | ||||||||||
Dolt | 14,919 | 2 | 15 hours ago | 214 | May 19, 2022 | 293 | apache-2.0 | Go | ||
Dolt – Git for Data |
db.py
is an easier way to interact with your databases. It makes it easier to explore tables, columns, views, etc. It puts the emphasis on user interaction, information display, and providing easy to use helper functions.
db.py
uses pandas
to manage data, so if you're already using pandas
, db.py
should feel pretty natural. It's also fully compatible with the IPython Notebook, so not only is db.py
extremely functional, it's also pretty.
db.py
let's you...Execute queries
>>> db.query_from_file("myscript.sql")
_id datetime user_id n
0 1290000 10/Jun/2014:18:21:27 +0000 0000015b37cd0964 1
1 9120009 23/Jun/2014:02:11:21 +0000 00006e01a6419822 1
2 1683874 23/Jun/2014:02:11:48 +0000 00006e01a6419822 2
3 2562153 23/Jun/2014:02:12:57 +0000 00006e01a6419822 3
4 393019 14/Jun/2014:16:05:18 +0000 000099d569e3a216 1
5 3542568 14/Jun/2014:16:06:02 +0000 000099d569e3a216 2
Fully compatible with predictive type
>>> db.tables.
db.tables.Album db.tables.Customer db.tables.Genre db.tables.InvoiceLine db.tables.Playlist db.tables.Track
db.tables.Artist db.tables.Employee db.tables.Invoice db.tables.MediaType db.tables.PlaylistTrack db.tables.tables
Friendly displays
>>> db.tables.Track
+-------------------------------------------------------------+
| Album |
+----------+---------------+-----------------+----------------+
| Column | Type | Foreign Keys | Reference Keys |
+----------+---------------+-----------------+----------------+
| AlbumId | INTEGER | | Track.AlbumId |
| Title | NVARCHAR(160) | | |
| ArtistId | INTEGER | Artist.ArtistId | |
+----------+---------------+-----------------+----------------+
Directly integrated with pandas
>>> db.tables.Track.head()
TrackId Name AlbumId MediaTypeId \
0 1 For Those About To Rock (We Salute You) 1 1
1 2 Balls to the Wall 2 2
2 3 Fast As a Shark 3 2
3 4 Restless and Wild 3 2
4 5 Princess of the Dawn 3 2
5 6 Put The Finger On You 1 1
GenreId Composer Milliseconds \
0 1 Angus Young, Malcolm Young, Brian Johnson 343719
1 1 None 342562
2 1 F. Baltes, S. Kaufman, U. Dirkscneider & W. Ho... 230619
3 1 F. Baltes, R.A. Smith-Diesel, S. Kaufman, U. D... 252051
4 1 Deaffy & R.A. Smith-Diesel 375418
5 1 Angus Young, Malcolm Young, Brian Johnson 205662
Bytes UnitPrice
0 11170334 0.99
1 5510424 0.99
2 3990994 0.99
3 4331779 0.99
4 6290521 0.99
5 6713451 0.99
Create queries using Handlebars style templates
q = """
SELECT
'{{ name }}' as table_name, sum(1) as cnt
FROM
{{ name }}
GROUP BY
table_name
"""
data = [
{"name": "Album"},
{"name": "Artist"},
{"name": "Track"}
]
db.query(q, data=data)
table_name cnt
0 Album 347
1 Artist 275
2 Track 3503
Search your schema
>>> db.find_column("*Id*")
+---------------+---------------+---------+
| Table | Column Name | Type |
+---------------+---------------+---------+
| Album | AlbumId | INTEGER |
| Album | ArtistId | INTEGER |
| Artist | ArtistId | INTEGER |
| Customer | SupportRepId | INTEGER |
| Customer | CustomerId | INTEGER |
| Employee | EmployeeId | INTEGER |
| Genre | GenreId | INTEGER |
| Invoice | InvoiceId | INTEGER |
| Invoice | CustomerId | INTEGER |
| InvoiceLine | InvoiceId | INTEGER |
| InvoiceLine | TrackId | INTEGER |
| InvoiceLine | InvoiceLineId | INTEGER |
| MediaType | MediaTypeId | INTEGER |
| Playlist | PlaylistId | INTEGER |
| PlaylistTrack | TrackId | INTEGER |
| PlaylistTrack | PlaylistId | INTEGER |
| Track | MediaTypeId | INTEGER |
| Track | TrackId | INTEGER |
| Track | AlbumId | INTEGER |
| Track | GenreId | INTEGER |
+---------------+---------------+---------+
IPython Notebook friendly
db.py
is on PyPi.
$ pip install db.py
The database libraries being used under the hood are optional dependencies (if you use mysql, you probably don't care about installing psycopg2). Based on the databases you're using, you'll need one (or many) of the following:
>>> from db import DemoDB # or connect to your own using DB. see below
>>> db = DemoDB() # comes from: http://chinookdatabase.codeplex.com/
>>> db.tables
+---------------+----------------------------------------------------------------------------------+
| Table | Columns |
+---------------+----------------------------------------------------------------------------------+
| Album | AlbumId, Title, ArtistId |
| Artist | ArtistId, Name |
| Customer | CustomerId, FirstName, LastName, Company, Address, City, State, Country, PostalC |
| | ode, Phone, Fax, Email, SupportRepId |
| Employee | EmployeeId, LastName, FirstName, Title, ReportsTo, BirthDate, HireDate, Address, |
| | City, State, Country, PostalCode, Phone, Fax, Email |
| Genre | GenreId, Name |
| Invoice | InvoiceId, CustomerId, InvoiceDate, BillingAddress, BillingCity, BillingState, B |
| | illingCountry, BillingPostalCode, Total |
| InvoiceLine | InvoiceLineId, InvoiceId, TrackId, UnitPrice, Quantity |
| MediaType | MediaTypeId, Name |
| Playlist | PlaylistId, Name |
| PlaylistTrack | PlaylistId, TrackId |
| Track | TrackId, Name, AlbumId, MediaTypeId, GenreId, Composer, Milliseconds, Bytes, Uni |
| | tPrice |
+---------------+----------------------------------------------------------------------------------+
>>> db.tables.Customer
+------------------------------------------------------------------------+
| Customer |
+--------------+--------------+---------------------+--------------------+
| Column | Type | Foreign Keys | Reference Keys |
+--------------+--------------+---------------------+--------------------+
| CustomerId | INTEGER | | Invoice.CustomerId |
| FirstName | NVARCHAR(40) | | |
| LastName | NVARCHAR(20) | | |
| Company | NVARCHAR(80) | | |
| Address | NVARCHAR(70) | | |
| City | NVARCHAR(40) | | |
| State | NVARCHAR(40) | | |
| Country | NVARCHAR(40) | | |
| PostalCode | NVARCHAR(10) | | |
| Phone | NVARCHAR(24) | | |
| Fax | NVARCHAR(24) | | |
| Email | NVARCHAR(60) | | |
| SupportRepId | INTEGER | Employee.EmployeeId | |
+--------------+--------------+---------------------+--------------------+
>>> db.tables.Customer.sample()
CustomerId FirstName LastName \
0 4 Bjørn Hansen
1 26 Richard Cunningham
2 1 Luís Gonçalves
3 21 Kathy Chase
4 6 Helena Holý
5 14 Mark Philips
6 49 Stanisław Wójcik
7 19 Tim Goyer
8 45 Ladislav Kovács
9 8 Daan Peeters
Company \
0 None
1 None
2 Embraer - Empresa Brasileira de Aeronáutica S.A.
3 None
4 None
5 Telus
6 None
7 Apple Inc.
8 None
9 None
Address City State Country \
0 Ullevålsveien 14 Oslo None Norway
1 2211 W Berry Street Fort Worth TX USA
2 Av. Brigadeiro Faria Lima, 2170 São José dos Campos SP Brazil
3 801 W 4th Street Reno NV USA
4 Rilská 3174/6 Prague None Czech Republic
5 8210 111 ST NW Edmonton AB Canada
6 Ordynacka 10 Warsaw None Poland
7 1 Infinite Loop Cupertino CA USA
8 Erzsébet krt. 58. Budapest None Hungary
9 Grétrystraat 63 Brussels None Belgium
PostalCode Phone Fax \
0 0171 +47 22 44 22 22 None
1 76110 +1 (817) 924-7272 None
2 12227-000 +55 (12) 3923-5555 +55 (12) 3923-5566
3 89503 +1 (775) 223-7665 None
4 14300 +420 2 4177 0449 None
5 T6G 2C7 +1 (780) 434-4554 +1 (780) 434-5565
6 00-358 +48 22 828 37 39 None
7 95014 +1 (408) 996-1010 +1 (408) 996-1011
8 H-1073 None None
9 1000 +32 02 219 03 03 None
Email SupportRepId
0 [email protected] 4
1 [email protected] 4
2 [email protected] 3
3 [email protected] 5
4 [email protected] 5
5 [email protected] 5
6 stanisław.wó[email protected] 4
7 [email protected] 3
8 [email protected] 3
9 [email protected] 4
>>> db.find_column("*Name*")
+-----------+-------------+---------------+
| Table | Column Name | Type |
+-----------+-------------+---------------+
| Artist | Name | NVARCHAR(120) |
| Customer | FirstName | NVARCHAR(40) |
| Customer | LastName | NVARCHAR(20) |
| Employee | FirstName | NVARCHAR(20) |
| Employee | LastName | NVARCHAR(20) |
| Genre | Name | NVARCHAR(120) |
| MediaType | Name | NVARCHAR(120) |
| Playlist | Name | NVARCHAR(120) |
| Track | Name | NVARCHAR(200) |
+-----------+-------------+---------------+
>>> db.find_table("A*")
+--------+--------------------------+
| Table | Columns |
+--------+--------------------------+
| Album | AlbumId, Title, ArtistId |
| Artist | ArtistId, Name |
+--------+--------------------------+
>>> db.query("select * from Artist limit 10;")
ArtistId Name
0 1 AC/DC
1 2 Accept
2 3 Aerosmith
3 4 Alanis Morissette
4 5 Alice In Chains
5 6 Antônio Carlos Jobim
6 7 Apocalyptica
7 8 Audioslave
8 9 BackBeat
9 10 Billy Cobham
DB()
objectArguments
localhost
, dw.mardukas.com
, ec2-54-191-289-254.us-west-2.compute.amazonaws.com
)hanksdb
)baseball-archive-2012.sqlite
, employees.db
)pg_
that you probably don't actually care about. on the other had if you're administrating a database, you might want to query these tablesquery
method, or by passing an argument to DB()
. None indicates that there will be no limit (That's right, you'll be limitless. Bradley Cooper style.)>>> from db import DB
>>> db = DB(username="greg", password="secret", hostname="localhost",
dbtype="postgres")
>>> from db import DB
>>> db = DB(username="greg", password="secret", hostname="localhost",
dbtype="postgres")
>>> db.save_credentials() # this will save to "default"
>>> db.save_credentials(profile="local_pg")
>>> from db import DB
>>> db = DB() # this loads "default" profile
>>> db = DB(profile="local_pg")
>>> from db import list_profiles
>>> list_profiles()
{'demo': {u'dbname': None,
u'dbtype': u'sqlite',
u'filename': u'/Users/glamp/repos/yhat/opensource/db.py/db/data/chinook.sqlite',
u'hostname': u'localhost',
u'password': None,
u'port': 5432,
u'username': None},
'muppets': {u'dbname': u'muppetdb',
u'dbtype': u'postgres',
u'filename': None,
u'hostname': u'muppets.yhathq.com',
u'password': None,
u'port': 5432,
u'username': u'kermit'}}
>>> remove_profile('demo')
>>> df1 = db.query("select * from Artist;")
>>> df2 = db.query("select * from Album;")
>>> db.query_from_file("myscript.sql")
>>> df = db.query_from_file("myscript.sql")
>>> db.find_table("A*")
+--------+--------------------------+
| Table | Columns |
+--------+--------------------------+
| Album | AlbumId, Title, ArtistId |
| Artist | ArtistId, Name |
+--------+--------------------------+
>>> results = db.find_table("tmp*") # returns all tables prefixed w/ tmp
>>> results = db.find_table("prod_*") # returns all tables prefixed w/ prod_
>>> results = db.find_table("*Invoice*") # returns all tables containing trans
>>> results = db.find_table("*") # returns everything
>>> db.find_column("Name") # returns all columns named "Name"
+-----------+-------------+---------------+
| Table | Column Name | Type |
+-----------+-------------+---------------+
| Artist | Name | NVARCHAR(120) |
| Genre | Name | NVARCHAR(120) |
| MediaType | Name | NVARCHAR(120) |
| Playlist | Name | NVARCHAR(120) |
| Track | Name | NVARCHAR(200) |
+-----------+-------------+---------------+
>>> db.find_column("*Id") # returns all columns ending w/ Id
+---------------+---------------+---------+
| Table | Column Name | Type |
+---------------+---------------+---------+
| Album | AlbumId | INTEGER |
| Album | ArtistId | INTEGER |
| Artist | ArtistId | INTEGER |
| Customer | SupportRepId | INTEGER |
| Customer | CustomerId | INTEGER |
| Employee | EmployeeId | INTEGER |
| Genre | GenreId | INTEGER |
| Invoice | InvoiceId | INTEGER |
| Invoice | CustomerId | INTEGER |
| InvoiceLine | InvoiceId | INTEGER |
| InvoiceLine | TrackId | INTEGER |
| InvoiceLine | InvoiceLineId | INTEGER |
| MediaType | MediaTypeId | INTEGER |
| Playlist | PlaylistId | INTEGER |
| PlaylistTrack | TrackId | INTEGER |
| PlaylistTrack | PlaylistId | INTEGER |
| Track | MediaTypeId | INTEGER |
| Track | TrackId | INTEGER |
| Track | AlbumId | INTEGER |
| Track | GenreId | INTEGER |
+---------------+---------------+---------+
>>> db.find_column("*Address*") # returns all columns containing Address
+----------+----------------+--------------+
| Table | Column Name | Type |
+----------+----------------+--------------+
| Customer | Address | NVARCHAR(70) |
| Employee | Address | NVARCHAR(70) |
| Invoice | BillingAddress | NVARCHAR(70) |
+----------+----------------+--------------+
# returns all columns containing Address that are varchars
>>> db.find_column("*Address*", data_type="NVARCHAR(70)")
# returns all columns have an "e" and are NVARCHAR/INTEGERS
>>> db.find_column("*e*", data_type=["NVARCHAR(70)", "INTEGER"])
To run individual tests:
$ python -m unittest test_module.TestClass.test_method
To run all the tests:
$ python -m unittest discover <path_to_tests_folder> -v
See either the TODO below or Adding a Database.