Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Transformers | 101,817 | 64 | 911 | 9 hours ago | 91 | June 21, 2022 | 719 | apache-2.0 | Python | |
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX. | ||||||||||
Nlp Tutorial | 12,403 | 2 months ago | 34 | mit | Jupyter Notebook | |||||
Natural Language Processing Tutorial for Deep Learning Researchers | ||||||||||
Text_classification | 7,411 | 8 months ago | 46 | mit | Python | |||||
all kinds of text classification models and more with deep learning | ||||||||||
Tensorflow Book | 4,443 | 3 years ago | 14 | mit | Jupyter Notebook | |||||
Accompanying source code for Machine Learning with TensorFlow. Refer to the book for step-by-step explanations. | ||||||||||
Spark Nlp | 3,262 | 2 | 2 | 9 hours ago | 90 | March 05, 2021 | 37 | apache-2.0 | Scala | |
State of the Art Natural Language Processing | ||||||||||
Zhihu | 3,228 | 2 years ago | 31 | Jupyter Notebook | ||||||
This repo contains the source code in my personal column (https://zhuanlan.zhihu.com/zhaoyeyu), implemented using Python 3.6. Including Natural Language Processing and Computer Vision projects, such as text generation, machine translation, deep convolution GAN and other actual combat code. | ||||||||||
Chatbot | 3,215 | 6 days ago | 92 | Python | ||||||
ChatGPT带火了聊天机器人,主流的趋势都调整到了GPT类模式,本项目也与时俱进,会在近期更新GPT类版本。基于本项目和自己的语料可以训练出自己想要的聊天机器人,用于智能客服、在线问答、闲聊等场景。 | ||||||||||
Deepqa | 2,878 | 5 months ago | 95 | apache-2.0 | Python | |||||
My tensorflow implementation of "A neural conversational model", a Deep learning based chatbot | ||||||||||
Lingvo | 2,726 | 3 days ago | 117 | apache-2.0 | Python | |||||
Lingvo | ||||||||||
Tensorflow Tutorials | 2,108 | 5 months ago | 23 | Python | ||||||
텐서플로우를 기초부터 응용까지 단계별로 연습할 수 있는 소스 코드를 제공합니다 |
谷歌最近开源了一个seq2seq项目 google seq2seq
tensorflow推出了dynamic_rnn替代了原来的bucket,本项目就是基于dynamic_rnn的seq2seq模型。
这里我构建了一些对话预料,中文语料本身就比较稀缺,理论上来说语料越多模型的效果越好,但会遇到很多新的问题,这里就不多作说明。
对话语料分别在data目录下 Q.txt A.txt中,可以替换成你自己的对话语料。
# 新增小黄鸡语料
# 添加
python prepare_dialog.py 5000
seq = Seq2seq()
# 训练
seq.train()
# 预测
seq.predict("天气")
# 重新训练
seq.retrain()
me > 天气
AI > 地点: 重庆
气温: 7
注意: 天气较凉,较易发生感冒,请适当增加衣服。体质较弱的朋友尤其应该注意防护。
本项目添加了Action支持,可以定制自己的功能
后续会加入多轮会话的支持!
在action.py文件中,注册自己action标签及对应的接口,如:
# 注意:参数为固定参数
def act_weather(model, output_str, raw_input):
#TODO: Get weather by api
page = requests.get("http://wthrcdn.etouch.cn/weather_mini?city=重庆")
data = page.json()
temperature = data['data']['wendu']
notice = data['data']['ganmao']
outstrs = "地点: %s\n气温: %s\n注意: %s" % ("重庆", temperature.encode("utf-8"), notice.encode("utf-8"))
return outstrs
actions = {
"__Weather__":act_weather
}
Tips: 接口的参数暂时固定,后续更新
同时,训练语料如下设计:
# Q.txt
天气
# A.txt
__Weather__