Practical_rl

A course in reinforcement learning in the wild
Alternatives To Practical_rl
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Awesome Artificial Intelligence8,777
a month ago48
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers.
Practical_rl5,572
3 months ago40unlicenseJupyter Notebook
A course in reinforcement learning in the wild
Awesome Ml Courses2,324
10 months ago3
Awesome free machine learning and AI courses with video lectures.
Ppoxfamily1,979
5 months ago56apache-2.0Python
PPO x Family DRL Tutorial Course(决策智能入门级公开课:8节课帮你盘清算法理论,理顺代码逻辑,玩转决策AI应用实践 )
Ml Course1,965
6 days ago33mitJupyter Notebook
Open Machine Learning course
Machine Learning Curriculum1,065
2 months agomit
:computer: Learn to make machines learn so that you don't have to struggle to program them; The ultimate list
Reinforcement_learning_course_materials857
6 months ago1mitJupyter Notebook
Lecture notes, tutorial tasks including solutions as well as online videos for the reinforcement learning course hosted by Paderborn University
Ml University710
4 months ago
Machine Learning Open Source University
Awesome Ai418
a month ago4mit
A curated list of artificial intelligence resources (Courses, Tools, App, Open Source Project)
Robust Multitask Rl84
5 years agomitJupyter Notebook
Machine Learning Course Project Skoltech 2018
Alternatives To Practical_rl
Select To Compare


Alternative Project Comparisons
Readme

Practical_RL

An open course on reinforcement learning in the wild. Taught on-campus at HSE and YSDA and maintained to be friendly to online students (both english and russian).

Manifesto:

  • Optimize for the curious. For all the materials that aren’t covered in detail there are links to more information and related materials (D.Silver/Sutton/blogs/whatever). Assignments will have bonus sections if you want to dig deeper.
  • Practicality first. Everything essential to solving reinforcement learning problems is worth mentioning. We won't shun away from covering tricks and heuristics. For every major idea there should be a lab that makes you to “feel” it on a practical problem.
  • Git-course. Know a way to make the course better? Noticed a typo in a formula? Found a useful link? Made the code more readable? Made a version for alternative framework? You're awesome! Pull-request it!

Github contributors

Course info

Additional materials

Syllabus

The syllabus is approximate: the lectures may occur in a slightly different order and some topics may end up taking two weeks.

  • week01_intro Introduction

    • Lecture: RL problems around us. Decision processes. Stochastic optimization, Crossentropy method. Parameter space search vs action space search.
    • Seminar: Welcome into openai gym. Tabular CEM for Taxi-v0, deep CEM for box2d environments.
    • Homework description - see week1/README.md.
  • week02_value_based Value-based methods

    • Lecture: Discounted reward MDP. Value-based approach. Value iteration. Policy iteration. Discounted reward fails.
    • Seminar: Value iteration.
    • Homework description - see week2/README.md.
  • week03_model_free Model-free reinforcement learning

    • Lecture: Q-learning. SARSA. Off-policy Vs on-policy algorithms. N-step algorithms. TD(Lambda).
    • Seminar: Qlearning Vs SARSA Vs Expected Value SARSA
    • Homework description - see week3/README.md.
  • recap_deep_learning - deep learning recap

    • Lecture: Deep learning 101
    • Seminar: Intro to pytorch/tensorflow, simple image classification with convnets
  • week04_approx_rl Approximate (deep) RL

    • Lecture: Infinite/continuous state space. Value function approximation. Convergence conditions. Multiple agents trick; experience replay, target networks, double/dueling/bootstrap DQN, etc.
    • Seminar: Approximate Q-learning with experience replay. (CartPole, Atari)
  • week05_explore Exploration

    • Lecture: Contextual bandits. Thompson Sampling, UCB, bayesian UCB. Exploration in model-based RL, MCTS. "Deep" heuristics for exploration.
    • Seminar: bayesian exploration for contextual bandits. UCB for MCTS.
  • week06_policy_based Policy Gradient methods

    • Lecture: Motivation for policy-based, policy gradient, logderivative trick, REINFORCE/crossentropy method, variance reduction(baseline), advantage actor-critic (incl. GAE)
    • Seminar: REINFORCE, advantage actor-critic
  • week07_seq2seq Reinforcement Learning for Sequence Models

    • Lecture: Problems with sequential data. Recurrent neural networks. Backprop through time. Vanishing & exploding gradients. LSTM, GRU. Gradient clipping
    • Seminar: character-level RNN language model
  • week08_pomdp Partially Observed MDP

    • Lecture: POMDP intro. POMDP learning (agents with memory). POMDP planning (POMCP, etc)
    • Seminar: Deep kung-fu & doom with recurrent A3C and DRQN
  • week09_policy_II Advanced policy-based methods

    • Lecture: Trust region policy optimization. NPO/PPO. Deterministic policy gradient. DDPG
    • Seminar: Approximate TRPO for simple robot control.
  • week10_planning Model-based RL & Co

    • Lecture: Model-Based RL, Planning in General, Imitation Learning and Inverse Reinforcement Learning
    • Seminar: MCTS for toy tasks
  • yet_another_week Inverse RL and Imitation Learning

    • All that cool RL stuff that you won't learn from this course :)

Course staff

Course materials and teaching by: [unordered]

Contributions

Popular Course Projects
Popular Reinforcement Learning Projects
Popular Learning Resources Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Jupyter Notebook
Deep Learning
Pytorch
Tensorflow
Course
Keras
Reinforcement Learning
Rl
Deep Reinforcement Learning
Course Materials
Mooc
Pytorch Tutorial