Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Tsai | 3,232 | 1 | 11 hours ago | 41 | April 19, 2022 | 20 | apache-2.0 | Jupyter Notebook | ||
Time series Timeseries Deep Learning Machine Learning Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai | ||||||||||
Pytorch Forecasting | 2,666 | 4 | 13 days ago | 33 | May 23, 2022 | 359 | mit | Python | ||
Time series forecasting with PyTorch | ||||||||||
Deep Learning Time Series | 1,811 | 7 months ago | 8 | apache-2.0 | Jupyter Notebook | |||||
List of papers, code and experiments using deep learning for time series forecasting | ||||||||||
Flow Forecast | 1,371 | 2 days ago | 87 | gpl-3.0 | Python | |||||
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection (originally for flood forecasting). | ||||||||||
Pytorch Ts | 943 | 8 days ago | 9 | April 24, 2022 | 57 | mit | Python | |||
PyTorch based Probabilistic Time Series forecasting framework based on GluonTS backend | ||||||||||
Getting Things Done With Pytorch | 873 | 2 years ago | 13 | apache-2.0 | Jupyter Notebook | |||||
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoencoders, Object Detection with YOLO v5, Build your first Neural Network, Time Series forecasting for Coronavirus daily cases, Sentiment Analysis with BERT. | ||||||||||
Ai Series | 724 | 25 days ago | other | Jupyter Notebook | ||||||
:books: [.md & .ipynb] Series of Artificial Intelligence & Deep Learning, including Mathematics Fundamentals, Python Practices, NLP Application, etc. 💫 人工智能与深度学习实战,数理统计篇 | 机器学习篇 | 深度学习篇 | 自然语言处理篇 | 工具实践 Scikit & Tensoflow & PyTorch 篇 | 行业应用 & 课程笔记 | ||||||||||
N Beats | 686 | 24 days ago | mit | Python | ||||||
Keras/Pytorch implementation of N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. | ||||||||||
Transformer | 583 | 6 months ago | 7 | gpl-3.0 | Jupyter Notebook | |||||
Implementation of Transformer model (originally from Attention is All You Need) applied to Time Series. | ||||||||||
Neuralcde | 352 | 2 years ago | 1 | apache-2.0 | Python | |||||
Code for "Neural Controlled Differential Equations for Irregular Time Series" (Neurips 2020 Spotlight) |
State-of-the-art Deep Learning library for Time Series and Sequences.
tsai
is an open-source deep learning package built on top of Pytorch &
fastai focused on state-of-the-art techniques for time series tasks like
classification, regression, forecasting, imputation
tsai
is currently under active development by timeseriesAI.
See our new tutorial notebook on how to track your experiments with
Weights & Biases
tsai
just got easier to use with the new sklearn-like APIs:
TSClassifier
,
TSRegressor
,
and
TSForecaster
!!
See this for
more info.
New tutorial notebook on how to train your model with
larger-than-memory datasets in less time achieving up to 100% GPU
usage!!
tsai
supports now more input formats: np.array, np.memmap, zarr,
xarray, dask, list, L,
Using this method, it is possible to train and test a classifier on all of 109 datasets from the UCR archive to state-of-the-art accuracy in less than 10 minutes. A. Dempster et al.(Dec 2020)
Multi-class and multi-label time series classification notebook:
you can also check our new tutorial notebook:
Self-supervised learning: Learn how to leverage your unlabeled
datasets
New visualization: Weve also added a new PredictionDynamics callback that will display the predictions during training. This is the type of output you would get in a classification task for example:
You can install the latest stable version from pip using:
pip install tsai
If you plan to develop tsai yourself, or want to be on the cutting edge, you can use an editable install. First install PyTorch, and then:
git clone https://github.com/timeseriesAI/tsai
pip install -e "tsai[dev]"
Note: starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install it when necessary). If you still want to install tsai with all its dependencies you can do it by running:
pip install tsai[extras]
You can also install tsai using conda (note that if you replace conda with mamba the install process will be much faster and more reliable):
conda install -c timeseriesai tsai
Heres the link to the documentation.
Heres a list with some of the state-of-the-art models available in
tsai
:
among others!
To get to know the tsai package, wed suggest you start with this notebook in Google Colab: 01_Intro_to_Time_Series_Classification It provides an overview of a time series classification task.
We have also develop many other tutorial notebooks.
To use tsai in your own notebooks, the only thing you need to do after you have installed the package is to run this:
from tsai.all import *
These are just a few examples of how you can use tsai
:
Training:
from tsai.all import *
X, y, splits = get_classification_data('ECG200', split_data=False)
batch_tfms = TSStandardize()
clf = TSClassifier(X, y, splits=splits, path='models', arch=InceptionTimePlus, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph())
clf.fit_one_cycle(100, 3e-4)
clf.export("clf.pkl")
Inference:
from tsai.inference import load_learner
clf = load_learner("models/clf.pkl")
probas, target, preds = clf.get_X_preds(X[splits[0]], y[splits[0]])
Training:
from tsai.all import *
X, y, splits = get_classification_data('LSST', split_data=False)
batch_tfms = TSStandardize(by_sample=True)
mv_clf = TSClassifier(X, y, splits=splits, path='models', arch=InceptionTimePlus, batch_tfms=batch_tfms, metrics=accuracy, cbs=ShowGraph())
mv_clf.fit_one_cycle(10, 1e-2)
mv_clf.export("mv_clf.pkl")
Inference:
from tsai.inference import load_learner
mv_clf = load_learner("models/mv_clf.pkl")
probas, target, preds = mv_clf.get_X_preds(X[splits[0]], y[splits[0]])
Training:
from tsai.all import *
X, y, splits = get_regression_data('AppliancesEnergy', split_data=False)
batch_tfms = TSStandardize(by_sample=True)
reg = TSRegressor(X, y, splits=splits, path='models', arch=TSTPlus, batch_tfms=batch_tfms, metrics=rmse, cbs=ShowGraph(), verbose=True)
reg.fit_one_cycle(100, 3e-4)
reg.export("reg.pkl")
Inference:
from tsai.inference import load_learner
reg = load_learner("models/reg.pkl")
raw_preds, target, preds = reg.get_X_preds(X[splits[0]], y[splits[0]])
The ROCKETs (RocketClassifier, RocketRegressor, MiniRocketClassifier, MiniRocketRegressor, MiniRocketVotingClassifier or MiniRocketVotingRegressor) are somewhat different models. They are not actually deep learning models (although they use convolutions) and are used in a different way.
Youll also need to install sktime to be able to use them. You can install it separately:
pip install sktime
or use:
pip install tsai[extras]
Training:
from sklearn.metrics import mean_squared_error, make_scorer
from tsai.all import *
from tsai.models.MINIROCKET import *
X_train, y_train, X_test, y_test = get_regression_data('AppliancesEnergy')
rmse_scorer = make_scorer(mean_squared_error, greater_is_better=False)
mr_reg = MiniRocketRegressor(scoring=rmse_scorer)
mr_reg.fit(X_train, y_train)
mr_reg.save("minirocket_regressor")
Inference:
mr_reg = load_rocket("minirocket_regressor")
y_pred = mr_reg.predict(X_test)
mean_squared_error(y_test, y_pred, squared=False)
You can use tsai for forecast in the following scenarios:
Youll need to: * prepare X (time series input) and the target y (see documentation) * select one of tsais models ending in Plus (TSTPlus, InceptionTimePlus, TSiTPlus, etc). The model will auto-configure a head to yield an output with the same shape as the target input y.
Training:
from tsai.all import *
ts = get_forecasting_time_series("Sunspots").values
X, y = SlidingWindow(60, horizon=1)(ts)
splits = TimeSplitter(235)(y)
batch_tfms = TSStandardize()
fcst = TSForecaster(X, y, splits=splits, path='models', batch_tfms=batch_tfms, bs=512, arch=TSTPlus, metrics=mae, cbs=ShowGraph())
fcst.fit_one_cycle(50, 1e-3)
fcst.export("fcst.pkl")
Inference:
from tsai.inference import load_learner
fcst = load_learner("models/fcst.pkl", cpu=False)
raw_preds, target, preds = fcst.get_X_preds(X[splits[0]], y[splits[0]])
raw_preds.shape
output: torch.Size([2940, 1])
This example show how to build a 3-step ahead univariate forecast.
Training:
from tsai.all import *
ts = get_forecasting_time_series("Sunspots").values
X, y = SlidingWindow(60, horizon=3)(ts)
splits = TimeSplitter(235)(y)
batch_tfms = TSStandardize()
fcst = TSForecaster(X, y, splits=splits, path='models', batch_tfms=batch_tfms, bs=512, arch=TSTPlus, metrics=mae, cbs=ShowGraph())
fcst.fit_one_cycle(50, 1e-3)
fcst.export("fcst.pkl")
Inference:
from tsai.inference import load_learner
fcst = load_learner("models/fcst.pkl", cpu=False)
raw_preds, target, preds = fcst.get_X_preds(X[splits[0]], y[splits[0]])
raw_preds.shape
output: torch.Size([2938, 3])
The input format for all time series models and image models in tsai is the same. An np.ndarray (or array-like object like zarr, etc) with 3 dimensions:
[# samples x # variables x sequence length]
The input format for tabular models in tsai (like TabModel, TabTransformer and TabFusionTransformer) is a pandas dataframe. See example.
We welcome contributions of all kinds. Development of enhancements, bug fixes, documentation, tutorial notebooks,
We have created a guide to help you start contributing to tsai. You can read it here.
If you use tsai in your research please use the following BibTeX entry:
@Misc{tsai,
author = {Ignacio Oguiza},
title = {tsai - A state-of-the-art deep learning library for time series and sequential data},
howpublished = {Github},
year = {2022},
url = {https://github.com/timeseriesAI/tsai}
}