Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Mit Deep Learning | 9,328 | 5 months ago | 15 | mit | Jupyter Notebook | |||||
Tutorials, assignments, and competitions for MIT Deep Learning related courses. | ||||||||||
Deeplearning | 7,463 | a year ago | 8 | apache-2.0 | Jupyter Notebook | |||||
深度学习入门教程, 优秀文章, Deep Learning Tutorial | ||||||||||
Tensorlayer | 7,161 | 34 | 6 | a month ago | 83 | February 15, 2022 | 30 | other | Python | |
Deep Learning and Reinforcement Learning Library for Scientists and Engineers | ||||||||||
Dcgan Tensorflow | 6,761 | 2 years ago | 183 | mit | JavaScript | |||||
A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks" | ||||||||||
Generative Models | 6,010 | 4 years ago | 18 | unlicense | Python | |||||
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. | ||||||||||
T81_558_deep_learning | 5,225 | 16 days ago | 2 | other | Jupyter Notebook | |||||
Washington University (in St. Louis) Course T81-558: Applications of Deep Neural Networks | ||||||||||
Tensorflow Tutorial | 3,873 | 2 years ago | 7 | mit | Python | |||||
Tensorflow tutorial from basic to hard | ||||||||||
Animegan | 3,738 | 8 months ago | 17 | Python | ||||||
A Tensorflow implementation of AnimeGAN for fast photo animation ! This is the Open source of the paper 「AnimeGAN: a novel lightweight GAN for photo animation」, which uses the GAN framwork to transform real-world photos into anime images. | ||||||||||
Tensorflow Generative Model Collections | 3,570 | 5 years ago | 22 | apache-2.0 | Python | |||||
Collection of generative models in Tensorflow | ||||||||||
Image Super Resolution | 3,376 | a year ago | 85 | apache-2.0 | Python | |||||
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks. |
Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"
For earlier version, please check srgan release and tensorlayer.
For more computer vision applications, check TLXCV
config.py
(like number of epochs) are seleted basic on that dataset, if you change a larger dataset you can reduce the number of epochs.train_hr_imgs = tl.files.load_flickr25k_dataset(tag=None)
in main.py
.config.TRAIN.hr_img_path
in config.py
.You need install TensorLayerX at first!
Please install TensorLayerX via source
pip install git+https://github.com/tensorlayer/tensorlayerx.git
config.py
, if you download DIV2K - bicubic downscaling x4 competition dataset, you don't need to change it.config.TRAIN.img_path = "your_image_folder/"
Your directory structure should look like this:
srgan/
config.py
srgan.py
train.py
vgg.py
model
vgg19.npy
DIV2K
DIV2K_train_HR
DIV2K_train_LR_bicubic
DIV2K_valid_HR
DIV2K_valid_LR_bicubic
python train.py
Modify a line of code in train.py, easily switch to any framework!
import os
os.environ['TL_BACKEND'] = 'tensorflow'
# os.environ['TL_BACKEND'] = 'mindspore'
# os.environ['TL_BACKEND'] = 'paddle'
# os.environ['TL_BACKEND'] = 'pytorch'
We will support PyTorch as Backend soon.
We have trained SRGAN on DIV2K dataset. Download model weights as follows.
SRGAN_g | SRGAN_d | |
---|---|---|
TensorFlow | Baidu, Googledrive | Baidu, Googledrive |
PaddlePaddle | Baidu, Googledrive | Baidu, Googledrive |
MindSpore | Coming soon! | Coming soon! |
PyTorch | Coming soon! | Coming soon! |
Download weights file and put weights under the folder srgan/models/.
Your directory structure should look like this:
srgan/
config.py
srgan.py
train.py
vgg.py
model
vgg19.npy
DIV2K
DIV2K_train_HR
DIV2K_train_LR_bicubic
DIV2K_valid_HR
DIV2K_valid_LR_bicubic
models
g.npz # You should rename the weigths file.
d.npz # If you set os.environ['TL_BACKEND'] = 'tensorflow',you should rename srgan-g-tensorflow.npz to g.npz .
python train.py --mode=eval
Results will be saved under the folder srgan/samples/.
If you find this project useful, we would be grateful if you cite the TensorLayer paper
@article{tensorlayer2017,
author = {Dong, Hao and Supratak, Akara and Mai, Luo and Liu, Fangde and Oehmichen, Axel and Yu, Simiao and Guo, Yike},
journal = {ACM Multimedia},
title = {{TensorLayer: A Versatile Library for Efficient Deep Learning Development}},
url = {http://tensorlayer.org},
year = {2017}
}
@inproceedings{tensorlayer2021,
title={TensorLayer 3.0: A Deep Learning Library Compatible With Multiple Backends},
author={Lai, Cheng and Han, Jiarong and Dong, Hao},
booktitle={2021 IEEE International Conference on Multimedia \& Expo Workshops (ICMEW)},
pages={1--3},
year={2021},
organization={IEEE}
}