Tfx

TFX is an end-to-end platform for deploying production ML pipelines
Alternatives To Tfx
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Jina17,94629 hours ago2,019July 06, 202240apache-2.0Python
🔮 Build multimodal AI services via cloud native technologies · Neural Search · Generative AI · Cloud Native
Kubeflow12,413210 hours ago112April 13, 2021401apache-2.0TypeScript
Machine Learning Toolkit for Kubernetes
Kedro8,2138329 hours ago35May 09, 2022282apache-2.0Python
A Python framework for creating reproducible, maintainable and modular data science code.
Stanza6,55226817 hours ago17April 23, 202275otherPython
Official Stanford NLP Python Library for Many Human Languages
Augmentor4,87821811 hours ago22April 27, 2022135mitPython
Image augmentation library in Python for machine learning.
Clearml4,241811 hours ago93July 04, 2022308apache-2.0Python
ClearML - Auto-Magical CI/CD to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
Deeplearningproject4,043
3 years ago3mitHTML
An in-depth machine learning tutorial introducing readers to a whole machine learning pipeline from scratch.
Orchest3,783
2 days ago14April 06, 2022124agpl-3.0Python
Build data pipelines, the easy way 🛠️
Mage Ai3,660
8 hours ago9June 27, 202257apache-2.0Python
🧙 The modern replacement for Airflow. Build, run, and manage data pipelines for integrating and transforming data.
Polyaxon3,28641110 hours ago334June 05, 2022121apache-2.0
MLOps Tools For Managing & Orchestrating The Machine Learning LifeCycle
Alternatives To Tfx
Select To Compare


Alternative Project Comparisons
Readme

TFX

Python PyPI TensorFlow

TensorFlow Extended (TFX) is a Google-production-scale machine learning platform based on TensorFlow. It provides a configuration framework to express ML pipelines consisting of TFX components. TFX pipelines can be orchestrated using Apache Airflow and Kubeflow Pipelines. Both the components themselves as well as the integrations with orchestration systems can be extended.

TFX components interact with a ML Metadata backend that keeps a record of component runs, input and output artifacts, and runtime configuration. This metadata backend enables advanced functionality like experiment tracking or warmstarting/resuming ML models from previous runs.

TFX Components

Documentation

User Documentation

Please see the TFX User Guide.

Development References

Roadmap

The TFX Roadmap, which is updated quarterly.

Release Details

For detailed previous and upcoming changes, please check here

Requests For Comment

TFX is an open-source project and we strongly encourage active participation by the ML community in helping to shape TFX to meet or exceed their needs. An important component of that effort is the RFC process. Please see the listing of current and past TFX RFCs. Please see the TensorFlow Request for Comments (TF-RFC) process page for information on how community members can contribute.

Examples

Compatible versions

The following table describes how the tfx package versions are compatible with its major dependency PyPI packages. This is determined by our testing framework, but other untested combinations may also work.

tfx apache-beam[gcp] ml-metadata pyarrow tensorflow tensorflow-data-validation tensorflow-metadata tensorflow-model-analysis tensorflow-serving-api tensorflow-transform tfx-bsl
GitHub master 2.40.0 1.12.0 6.0.0 nightly (2.x) 1.12.0 1.12.0 0.43.0 2.9.0 1.12.0 1.12.0
1.12.0 2.40.0 1.12.0 6.0.0 2.11 1.12.0 1.12.0 0.43.0 2.9.0 1.12.0 1.12.0
1.11.0 2.40.0 1.11.0 6.0.0 1.15.5 / 2.10.0 1.11.0 1.11.0 0.42.0 2.9.0 1.11.0 1.11.0
1.10.0 2.40.0 1.10.0 6.0.0 1.15.5 / 2.9.0 1.10.0 1.10.0 0.41.0 2.9.0 1.10.0 1.10.0
1.9.0 2.38.0 1.9.0 5.0.0 1.15.5 / 2.9.0 1.9.0 1.9.0 0.40.0 2.9.0 1.9.0 1.9.0
1.8.0 2.38.0 1.8.0 5.0.0 1.15.5 / 2.8.0 1.8.0 1.8.0 0.39.0 2.8.0 1.8.0 1.8.0
1.7.0 2.36.0 1.7.0 5.0.0 1.15.5 / 2.8.0 1.7.0 1.7.0 0.38.0 2.8.0 1.7.0 1.7.0
1.6.2 2.35.0 1.6.0 5.0.0 1.15.5 / 2.8.0 1.6.0 1.6.0 0.37.0 2.7.0 1.6.0 1.6.0
1.6.0 2.35.0 1.6.0 5.0.0 1.15.5 / 2.7.0 1.6.0 1.6.0 0.37.0 2.7.0 1.6.0 1.6.0
1.5.0 2.34.0 1.5.0 5.0.0 1.15.2 / 2.7.0 1.5.0 1.5.0 0.36.0 2.7.0 1.5.0 1.5.0
1.4.0 2.33.0 1.4.0 5.0.0 1.15.0 / 2.6.0 1.4.0 1.4.0 0.35.0 2.6.0 1.4.0 1.4.0
1.3.4 2.32.0 1.3.0 2.0.0 1.15.0 / 2.6.0 1.3.0 1.2.0 0.34.1 2.6.0 1.3.0 1.3.0
1.3.3 2.32.0 1.3.0 2.0.0 1.15.0 / 2.6.0 1.3.0 1.2.0 0.34.1 2.6.0 1.3.0 1.3.0
1.3.2 2.32.0 1.3.0 2.0.0 1.15.0 / 2.6.0 1.3.0 1.2.0 0.34.1 2.6.0 1.3.0 1.3.0
1.3.1 2.32.0 1.3.0 2.0.0 1.15.0 / 2.6.0 1.3.0 1.2.0 0.34.1 2.6.0 1.3.0 1.3.0
1.3.0 2.32.0 1.3.0 2.0.0 1.15.0 / 2.6.0 1.3.0 1.2.0 0.34.1 2.6.0 1.3.0 1.3.0
1.2.1 2.31.0 1.2.0 2.0.0 1.15.0 / 2.5.0 1.2.0 1.2.0 0.33.0 2.5.1 1.2.0 1.2.0
1.2.0 2.31.0 1.2.0 2.0.0 1.15.0 / 2.5.0 1.2.0 1.2.0 0.33.0 2.5.1 1.2.0 1.2.0
1.0.0 2.29.0 1.0.0 2.0.0 1.15.0 / 2.5.0 1.0.0 1.0.0 0.31.0 2.5.1 1.0.0 1.0.0
0.30.0 2.28.0 0.30.0 2.0.0 1.15.0 / 2.4.0 0.30.0 0.30.0 0.30.0 2.4.0 0.30.0 0.30.0
0.29.0 2.28.0 0.29.0 2.0.0 1.15.0 / 2.4.0 0.29.0 0.29.0 0.29.0 2.4.0 0.29.0 0.29.0
0.28.0 2.28.0 0.28.0 2.0.0 1.15.0 / 2.4.0 0.28.0 0.28.0 0.28.0 2.4.0 0.28.0 0.28.1
0.27.0 2.27.0 0.27.0 2.0.0 1.15.0 / 2.4.0 0.27.0 0.27.0 0.27.0 2.4.0 0.27.0 0.27.0
0.26.4 2.28.0 0.26.0 0.17.0 1.15.0 / 2.3.0 0.26.1 0.26.0 0.26.0 2.3.0 0.26.0 0.26.0
0.26.3 2.25.0 0.26.0 0.17.0 1.15.0 / 2.3.0 0.26.0 0.26.0 0.26.0 2.3.0 0.26.0 0.26.0
0.26.1 2.25.0 0.26.0 0.17.0 1.15.0 / 2.3.0 0.26.0 0.26.0 0.26.0 2.3.0 0.26.0 0.26.0
0.26.0 2.25.0 0.26.0 0.17.0 1.15.0 / 2.3.0 0.26.0 0.26.0 0.26.0 2.3.0 0.26.0 0.26.0
0.25.0 2.25.0 0.24.0 0.17.0 1.15.0 / 2.3.0 0.25.0 0.25.0 0.25.0 2.3.0 0.25.0 0.25.0
0.24.1 2.24.0 0.24.0 0.17.0 1.15.0 / 2.3.0 0.24.1 0.24.0 0.24.3 2.3.0 0.24.1 0.24.1
0.24.0 2.24.0 0.24.0 0.17.0 1.15.0 / 2.3.0 0.24.1 0.24.0 0.24.3 2.3.0 0.24.1 0.24.1
0.23.1 2.24.0 0.23.0 0.17.0 1.15.0 / 2.3.0 0.23.1 0.23.0 0.23.0 2.3.0 0.23.0 0.23.0
0.23.0 2.23.0 0.23.0 0.17.0 1.15.0 / 2.3.0 0.23.0 0.23.0 0.23.0 2.3.0 0.23.0 0.23.0
0.22.2 2.21.0 0.22.1 0.16.0 1.15.0 / 2.2.0 0.22.2 0.22.2 0.22.2 2.2.0 0.22.0 0.22.1
0.22.1 2.21.0 0.22.1 0.16.0 1.15.0 / 2.2.0 0.22.2 0.22.2 0.22.2 2.2.0 0.22.0 0.22.1
0.22.0 2.21.0 0.22.0 0.16.0 1.15.0 / 2.2.0 0.22.0 0.22.0 0.22.1 2.2.0 0.22.0 0.22.0
0.21.5 2.17.0 0.21.2 0.15.0 1.15.0 / 2.1.0 0.21.5 0.21.1 0.21.5 2.1.0 0.21.2 0.21.4
0.21.4 2.17.0 0.21.2 0.15.0 1.15.0 / 2.1.0 0.21.5 0.21.1 0.21.5 2.1.0 0.21.2 0.21.4
0.21.3 2.17.0 0.21.2 0.15.0 1.15.0 / 2.1.0 0.21.5 0.21.1 0.21.5 2.1.0 0.21.2 0.21.4
0.21.2 2.17.0 0.21.2 0.15.0 1.15.0 / 2.1.0 0.21.5 0.21.1 0.21.5 2.1.0 0.21.2 0.21.4
0.21.1 2.17.0 0.21.2 0.15.0 1.15.0 / 2.1.0 0.21.4 0.21.1 0.21.4 2.1.0 0.21.2 0.21.3
0.21.0 2.17.0 0.21.0 0.15.0 1.15.0 / 2.1.0 0.21.0 0.21.0 0.21.1 2.1.0 0.21.0 0.21.0
0.15.0 2.16.0 0.15.0 0.15.0 1.15.0 0.15.0 0.15.0 0.15.2 1.15.0 0.15.0 0.15.1
0.14.0 2.14.0 0.14.0 0.14.0 1.14.0 0.14.1 0.14.0 0.14.0 1.14.0 0.14.0 n/a
0.13.0 2.12.0 0.13.2 n/a 1.13.1 0.13.1 0.13.0 0.13.2 1.13.0 0.13.0 n/a
0.12.0 2.10.0 0.13.2 n/a 1.12.0 0.12.0 0.12.1 0.12.1 1.12.0 0.12.0 n/a

Resources

Popular Pipeline Projects
Popular Machine Learning Projects
Popular Data Processing Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Ml
Machine Learning
Tensorflow
Pipeline
Rfc