Tfjs

A WebGL accelerated JavaScript library for training and deploying ML models.
Alternatives To Tfjs
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Tfjs17,4226605086 hours ago126August 23, 2022564apache-2.0TypeScript
A WebGL accelerated JavaScript library for training and deploying ML models.
Keras Js4,879316a year ago7February 09, 201883mitJavaScript
Run Keras models in the browser, with GPU support using WebGL
Hedgehog Lab2,323
3 months ago33apache-2.0TypeScript
Run, compile and execute JavaScript for Scientific Computing and Data Visualization TOTALLY TOTALLY TOTALLY in your BROWSER! An open source scientific computing environment for JavaScript TOTALLY in your browser, matrix operations with GPU acceleration, TeX support, data visualization and symbolic computation.
Car Simulator319
6 years agomitJavaScript
Autonomous car simulator (based on JavaScript & WebGL) implemented by fuzzy control system, genetic algorithm and particle swarm optimization.
Natml Unity184
a month agoapache-2.0C#
High performance, cross-platform machine learning for Unity Engine. Register at https://hub.natml.ai
Webml Polyfill153
2 months ago328apache-2.0Python
Deprecated, the Web Neural Network Polyfill project has been moved to https://github.com/webmachinelearning/webnn-polyfill
Gammacv1511914 days ago19March 27, 202311mitJavaScript
GammaCV is a WebGL accelerated Computer Vision library for browser
Tfjs Tutorials59
3 years ago2
📃 TensorFlow.js 官方指南繁體中文版
Natdevice21
2 months ago2apache-2.0C#
High performance, cross-platform media device streaming for Unity Engine. Register at https://hub.natml.ai
Wizmap21
3 days agomitTypeScript
Explore and interpret large embeddings in your browser with interactive visualization! 📍
Alternatives To Tfjs
Select To Compare


Alternative Project Comparisons
Readme

TensorFlow.js

TensorFlow.js is an open-source hardware-accelerated JavaScript library for training and deploying machine learning models.

Develop ML in the Browser
Use flexible and intuitive APIs to build models from scratch using the low-level JavaScript linear algebra library or the high-level layers API.

Develop ML in Node.js
Execute native TensorFlow with the same TensorFlow.js API under the Node.js runtime.

Run Existing models
Use TensorFlow.js model converters to run pre-existing TensorFlow models right in the browser.

Retrain Existing models
Retrain pre-existing ML models using sensor data connected to the browser or other client-side data.

About this repo

This repository contains the logic and scripts that combine several packages.

APIs:

Backends/Platforms:

If you care about bundle size, you can import those packages individually.

If you are looking for Node.js support, check out the TensorFlow.js Node directory.

Examples

Check out our examples repository and our tutorials.

Gallery

Be sure to check out the gallery of all projects related to TensorFlow.js.

Pre-trained models

Be sure to also check out our models repository where we host pre-trained models on NPM.

Benchmarks

  • Local benchmark tool. Use this webpage tool to collect the performance related metrics (speed, memory, etc) of TensorFlow.js models and kernels on your local device with CPU, WebGL or WASM backends. You can benchmark custom models by following this guide.
  • Multi-device benchmark tool. Use this tool to collect the same performance related metrics on a collection of remote devices.

Getting started

There are two main ways to get TensorFlow.js in your JavaScript project: via script tags or by installing it from NPM and using a build tool like Parcel, WebPack, or Rollup.

via Script Tag

Add the following code to an HTML file:

<html>
  <head>
    <!-- Load TensorFlow.js -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js"> </script>


    <!-- Place your code in the script tag below. You can also use an external .js file -->
    <script>
      // Notice there is no 'import' statement. 'tf' is available on the index-page
      // because of the script tag above.

      // Define a model for linear regression.
      const model = tf.sequential();
      model.add(tf.layers.dense({units: 1, inputShape: [1]}));

      // Prepare the model for training: Specify the loss and the optimizer.
      model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

      // Generate some synthetic data for training.
      const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
      const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);

      // Train the model using the data.
      model.fit(xs, ys).then(() => {
        // Use the model to do inference on a data point the model hasn't seen before:
        // Open the browser devtools to see the output
        model.predict(tf.tensor2d([5], [1, 1])).print();
      });
    </script>
  </head>

  <body>
  </body>
</html>

Open up that HTML file in your browser, and the code should run!

via NPM

Add TensorFlow.js to your project using yarn or npm. Note: Because we use ES2017 syntax (such as import), this workflow assumes you are using a modern browser or a bundler/transpiler to convert your code to something older browsers understand. See our examples to see how we use Parcel to build our code. However, you are free to use any build tool that you prefer.

import * as tf from '@tensorflow/tfjs';

// Define a model for linear regression.
const model = tf.sequential();
model.add(tf.layers.dense({units: 1, inputShape: [1]}));

// Prepare the model for training: Specify the loss and the optimizer.
model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});

// Generate some synthetic data for training.
const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);

// Train the model using the data.
model.fit(xs, ys).then(() => {
  // Use the model to do inference on a data point the model hasn't seen before:
  model.predict(tf.tensor2d([5], [1, 1])).print();
});

See our tutorials, examples and documentation for more details.

Importing pre-trained models

We support porting pre-trained models from:

Various ops supported in different backends

Please refer below :

Find out more

TensorFlow.js is a part of the TensorFlow ecosystem. For more info:

Thanks, BrowserStack, for providing testing support.

Popular Webgl Projects
Popular Machine Learning Projects
Popular Graphics Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Javascript
Typescript
Machine Learning
Deep Learning
Tensorflow
Neural Network
Webgl
Deep Neural Networks
Gpu Acceleration