Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Gold Miner | 32,101 | a day ago | 5 | |||||||
🥇掘金翻译计划,可能是世界最大最好的英译中技术社区,最懂读者和译者的翻译平台: | ||||||||||
Deeplearningexamples | 10,561 | 2 days ago | 227 | Jupyter Notebook | ||||||
State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and performance on enterprise-grade infrastructure. | ||||||||||
Docs | 5,691 | a day ago | 11 | apache-2.0 | Jupyter Notebook | |||||
TensorFlow documentation | ||||||||||
Seq2seq | 5,300 | 2 years ago | 194 | apache-2.0 | Python | |||||
A general-purpose encoder-decoder framework for Tensorflow | ||||||||||
Transformer | 3,882 | 6 days ago | 134 | apache-2.0 | Python | |||||
A TensorFlow Implementation of the Transformer: Attention Is All You Need | ||||||||||
Zhihu | 3,228 | 2 years ago | 31 | Jupyter Notebook | ||||||
This repo contains the source code in my personal column (https://zhuanlan.zhihu.com/zhaoyeyu), implemented using Python 3.6. Including Natural Language Processing and Computer Vision projects, such as text generation, machine translation, deep convolution GAN and other actual combat code. | ||||||||||
Lingvo | 2,698 | a day ago | 116 | apache-2.0 | Python | |||||
Lingvo | ||||||||||
Openseq2seq | 1,393 | 2 years ago | 85 | apache-2.0 | Python | |||||
Toolkit for efficient experimentation with Speech Recognition, Text2Speech and NLP | ||||||||||
Opennmt Tf | 1,368 | 9 | 3 | a month ago | 95 | June 02, 2022 | 23 | mit | Python | |
Neural machine translation and sequence learning using TensorFlow | ||||||||||
Docs L10n | 592 | a day ago | 1 | apache-2.0 | Jupyter Notebook | |||||
Translations of TensorFlow documentation |
Simple Tensorflow implementation of Diverse Image-to-Image Translation via Disentangled Representations (ECCV 2018 Oral)
├── dataset
└── YOUR_DATASET_NAME
├── trainA
├── xxx.jpg (name, format doesn't matter)
├── yyy.png
└── ...
├── trainB
├── zzz.jpg
├── www.png
└── ...
├── testA
├── aaa.jpg
├── bbb.png
└── ...
└── testB
├── ccc.jpg
├── ddd.png
└── ...
├── guide.jpg (example for guided image translation task)
python main.py --phase train --dataset summer2winter --concat True
python main.py --phase test --dataset summer2winter --concat True --num_attribute 3
python main.py --phase guide --dataset summer2winter --concat True --direction a2b --guide_img ./guide.jpg
--concat
True
: for the shape preserving translation (summer <-> winter) (default)
False
: for the shape variation translation (cat <-> dog)--n_scale
n_scale = 3
(default)
n_scale > 1
, a.k.a. multiscale discriminator
often gets better results--n_dis
n_dis = 4
(default)
n_dis = 6
--n_d_con
n_d_con = 3
(default)
n_d_con = 1
--num_attribute (only for the test phase)
num_attribute > 1
, then output images are variously generated
Junho Kim