Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Transformers | 103,377 | 64 | 911 | 4 hours ago | 91 | June 21, 2022 | 747 | apache-2.0 | Python | |
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX. | ||||||||||
Stable Diffusion Webui | 82,173 | 5 hours ago | 1,957 | agpl-3.0 | Python | |||||
Stable Diffusion web UI | ||||||||||
Pytorch | 67,670 | 146 | 4 hours ago | 23 | August 10, 2022 | 12,257 | other | Python | ||
Tensors and Dynamic neural networks in Python with strong GPU acceleration | ||||||||||
Real Time Voice Cloning | 41,693 | a month ago | 129 | other | Python | |||||
Clone a voice in 5 seconds to generate arbitrary speech in real-time | ||||||||||
Yolov5 | 39,244 | a day ago | 35 | May 21, 2022 | 258 | agpl-3.0 | Python | |||
YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite | ||||||||||
Made With Ml | 33,193 | a month ago | 5 | May 15, 2019 | 11 | mit | Jupyter Notebook | |||
Learn how to responsibly develop, deploy and maintain production machine learning applications. | ||||||||||
Gfpgan | 29,431 | 1 | 3 days ago | 11 | February 15, 2022 | 226 | other | Python | ||
GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. | ||||||||||
Mockingbird | 29,184 | 2 | 7 days ago | 9 | February 28, 2022 | 425 | other | Python | ||
🚀AI拟声: 5秒内克隆您的声音并生成任意语音内容 Clone a voice in 5 seconds to generate arbitrary speech in real-time | ||||||||||
Pytorch Tutorial | 26,129 | 2 months ago | 85 | mit | Python | |||||
PyTorch Tutorial for Deep Learning Researchers | ||||||||||
Ray | 25,958 | 80 | 199 | 4 hours ago | 76 | June 09, 2022 | 2,928 | apache-2.0 | Python | |
Ray is a unified framework for scaling AI and Python applications. Ray consists of a core distributed runtime and a toolkit of libraries (Ray AIR) for accelerating ML workloads. |
This repository provides State-of-the-Art Deep Learning examples that are easy to train and deploy, achieving the best reproducible accuracy and performance with NVIDIA CUDA-X software stack running on NVIDIA Volta, Turing and Ampere GPUs.
These examples, along with our NVIDIA deep learning software stack, are provided in a monthly updated Docker container on the NGC container registry (https://ngc.nvidia.com). These containers include:
Models | Framework | AMP | Multi-GPU | Multi-Node | TensorRT | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|---|
EfficientNet-B0 | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
EfficientNet-B4 | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
EfficientNet-WideSE-B0 | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
EfficientNet-WideSE-B4 | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
EfficientNet v1-B0 | TensorFlow2 | Yes | Yes | Yes | Example | - | Supported | Yes | - |
EfficientNet v1-B4 | TensorFlow2 | Yes | Yes | Yes | Example | - | Supported | Yes | - |
EfficientNet v2-S | TensorFlow2 | Yes | Yes | Yes | Example | - | Supported | Yes | - |
GPUNet | PyTorch | Yes | Yes | - | Example | Yes | Example | Yes | - |
Mask R-CNN | PyTorch | Yes | Yes | - | Example | - | Supported | - | Yes |
Mask R-CNN | TensorFlow2 | Yes | Yes | - | Example | - | Supported | Yes | - |
nnUNet | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
ResNet-50 | MXNet | Yes | Yes | - | Supported | - | Supported | - | - |
ResNet-50 | PaddlePaddle | Yes | Yes | - | Example | - | Supported | - | - |
ResNet-50 | PyTorch | Yes | Yes | - | Example | - | Example | Yes | - |
ResNet-50 | TensorFlow | Yes | Yes | - | Supported | - | Supported | Yes | - |
ResNeXt-101 | PyTorch | Yes | Yes | - | Example | - | Example | Yes | - |
ResNeXt-101 | TensorFlow | Yes | Yes | - | Supported | - | Supported | Yes | - |
SE-ResNeXt-101 | PyTorch | Yes | Yes | - | Example | - | Example | Yes | - |
SE-ResNeXt-101 | TensorFlow | Yes | Yes | - | Supported | - | Supported | Yes | - |
SSD | PyTorch | Yes | Yes | - | Supported | - | Supported | - | Yes |
SSD | TensorFlow | Yes | Yes | - | Supported | - | Supported | Yes | Yes |
U-Net Med | TensorFlow2 | Yes | Yes | - | Example | - | Supported | Yes | - |
Models | Framework | AMP | Multi-GPU | Multi-Node | TensorRT | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|---|
BERT | PyTorch | Yes | Yes | Yes | Example | - | Example | Yes | - |
GNMT | PyTorch | Yes | Yes | - | Supported | - | Supported | - | - |
ELECTRA | TensorFlow2 | Yes | Yes | Yes | Supported | - | Supported | Yes | - |
BERT | TensorFlow | Yes | Yes | Yes | Example | - | Example | Yes | Yes |
BERT | TensorFlow2 | Yes | Yes | Yes | Supported | - | Supported | Yes | - |
GNMT | TensorFlow | Yes | Yes | - | Supported | - | Supported | - | - |
Faster Transformer | Tensorflow | - | - | - | Example | - | Supported | - | - |
Models | Framework | AMP | Multi-GPU | Multi-Node | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|
DLRM | PyTorch | Yes | Yes | - | Yes | Example | Yes | Yes |
DLRM | TensorFlow2 | Yes | Yes | Yes | - | Supported | Yes | - |
NCF | PyTorch | Yes | Yes | - | - | Supported | - | - |
Wide&Deep | TensorFlow | Yes | Yes | - | - | Supported | Yes | - |
Wide&Deep | TensorFlow2 | Yes | Yes | - | - | Supported | Yes | - |
NCF | TensorFlow | Yes | Yes | - | - | Supported | Yes | - |
VAE-CF | TensorFlow | Yes | Yes | - | - | Supported | - | - |
SIM | TensorFlow2 | Yes | Yes | - | - | Supported | Yes | - |
Models | Framework | AMP | Multi-GPU | Multi-Node | TensorRT | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|---|
Jasper | PyTorch | Yes | Yes | - | Example | Yes | Example | Yes | Yes |
QuartzNet | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
Models | Framework | AMP | Multi-GPU | Multi-Node | TensorRT | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|---|
FastPitch | PyTorch | Yes | Yes | - | Example | - | Example | Yes | Yes |
FastSpeech | PyTorch | Yes | Yes | - | Example | - | Supported | - | - |
Tacotron 2 and WaveGlow | PyTorch | Yes | Yes | - | Example | Yes | Example | Yes | - |
HiFi-GAN | PyTorch | Yes | Yes | - | Supported | - | Supported | Yes | - |
Models | Framework | AMP | Multi-GPU | Multi-Node | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|
SE(3)-Transformer | PyTorch | Yes | Yes | - | - | Supported | - | - |
MoFlow | PyTorch | Yes | Yes | - | - | Supported | - | - |
Models | Framework | AMP | Multi-GPU | Multi-Node | TensorRT | ONNX | Triton | DLC | NB |
---|---|---|---|---|---|---|---|---|---|
Temporal Fusion Transformer | PyTorch | Yes | Yes | - | Example | Yes | Example | Yes | - |
In each of the network READMEs, we indicate the level of support that will be provided. The range is from ongoing updates and improvements to a point-in-time release for thought leadership.
Multinode Training Supported on a pyxis/enroot Slurm cluster.
Deep Learning Compiler (DLC) TensorFlow XLA and PyTorch JIT and/or TorchScript
Accelerated Linear Algebra (XLA) XLA is a domain-specific compiler for linear algebra that can accelerate TensorFlow models with potentially no source code changes. The results are improvements in speed and memory usage.
PyTorch JIT and/or TorchScript TorchScript is a way to create serializable and optimizable models from PyTorch code. TorchScript, an intermediate representation of a PyTorch model (subclass of nn.Module) that can then be run in a high-performance environment such as C++.
Automatic Mixed Precision (AMP) Automatic Mixed Precision (AMP) enables mixed precision training on Volta, Turing, and NVIDIA Ampere GPU architectures automatically.
TensorFloat-32 (TF32) TensorFloat-32 (TF32) is the new math mode in NVIDIA A100 GPUs for handling the matrix math also called tensor operations. TF32 running on Tensor Cores in A100 GPUs can provide up to 10x speedups compared to single-precision floating-point math (FP32) on Volta GPUs. TF32 is supported in the NVIDIA Ampere GPU architecture and is enabled by default.
Jupyter Notebooks (NB) The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text.
We're posting these examples on GitHub to better support the community, facilitate feedback, as well as collect and implement contributions using GitHub Issues and pull requests. We welcome all contributions!
In each of the network READMEs, we indicate any known issues and encourage the community to provide feedback.