Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Tvm | 10,360 | 3 | a day ago | 1 | February 23, 2021 | 767 | apache-2.0 | Python | ||
Open deep learning compiler stack for cpu, gpu and specialized accelerators | ||||||||||
Plaidml | 4,533 | 2 months ago | 274 | apache-2.0 | C++ | |||||
PlaidML is a framework for making deep learning work everywhere. | ||||||||||
Tnn | 4,126 | 7 days ago | 287 | other | C++ | |||||
TNN: developed by Tencent Youtu Lab and Guangying Lab, a uniform deep learning inference framework for mobile、desktop and server. TNN is distinguished by several outstanding features, including its cross-platform capability, high performance, model compression and code pruning. Based on ncnn and Rapidnet, TNN further strengthens the support and performance optimization for mobile devices, and also draws on the advantages of good extensibility and high performance from existed open source efforts. TNN has been deployed in multiple Apps from Tencent, such as Mobile QQ, Weishi, Pitu, etc. Contributions are welcome to work in collaborative with us and make TNN a better framework. | ||||||||||
Neon | 3,863 | 3 years ago | 1 | October 11, 2018 | 91 | apache-2.0 | Python | |||
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware | ||||||||||
Onednn | 3,268 | 3 | 2 days ago | 23 | October 22, 2022 | 55 | apache-2.0 | C++ | ||
oneAPI Deep Neural Network Library (oneDNN) | ||||||||||
Byteps | 3,254 | a year ago | 8 | August 02, 2021 | 107 | other | Python | |||
A high performance and generic framework for distributed DNN training | ||||||||||
Ngraph | 1,310 | 1 | 3 years ago | 9 | November 09, 2019 | apache-2.0 | C++ | |||
nGraph - open source C++ library, compiler and runtime for Deep Learning | ||||||||||
Caffe | 839 | a year ago | 76 | other | C++ | |||||
This fork of BVLC/Caffe is dedicated to improving performance of this deep learning framework when running on CPU, in particular Intel® Xeon processors. | ||||||||||
Caer | 691 | 1 | 4 months ago | 119 | October 13, 2021 | 2 | mit | Python | ||
High-performance Vision library in Python. Scale your research, not boilerplate. | ||||||||||
Models | 600 | 19 days ago | 46 | apache-2.0 | Python | |||||
Model Zoo for Intel® Architecture: contains Intel optimizations for running deep learning workloads on Intel® Xeon® Scalable processors |
oneAPI Deep Neural Network Library (oneDNN) is an open-source cross-platform performance library of basic building blocks for deep learning applications. oneDNN is part of oneAPI. The library is optimized for Intel(R) Architecture Processors, Intel Graphics, and Arm* 64-bit Architecture (AArch64)-based processors. oneDNN has experimental support for the following architectures: NVIDIA* GPU, AMD* GPU, OpenPOWER* Power ISA (PPC64), IBMz* (s390x), and RISC-V.
oneDNN is intended for deep learning applications and framework developers interested in improving application performance on CPUs and GPUs. Deep learning practitioners should use one of the applications enabled with oneDNN.
Binary distribution of this software is available in:
The packages do not include library dependencies and these need to be resolved in the application at build time. See the System Requirements section below and the Build Options section in the developer guide for more details on CPU and GPU runtimes.
If the configuration you need is not available, you can build the library from source.
oneDNN supports platforms based on the following architectures:
WARNING
Power ISA (PPC64), IBMz (s390x), and RISC-V (RV64) support is experimental with limited testing validation.
The library is optimized for the following CPUs:
On a CPU based on Intel 64 or on AMD64 architecture, oneDNN detects the instruction set architecture (ISA) at runtime and uses just-in-time (JIT) code generation to deploy the code optimized for the latest supported ISA. Future ISAs may have initial support in the library disabled by default and require the use of run-time controls to enable them. See CPU dispatcher control for more details.
On a CPU based on Arm AArch64 architecture, oneDNN can be built with Arm Compute Library integration. Compute Library is an open-source library for machine learning applications and provides AArch64 optimized implementations of core functions. This functionality currently requires that Compute Library is downloaded and built separately, see Build from Source. oneDNN only supports Compute Library versions 23.02.1 or later.
WARNING
On macOS, applications that use oneDNN may need to request special entitlements if they use the hardened runtime. See the linking guide for more details.
The library is optimized for the following GPUs:
oneDNN supports systems meeting the following requirements:
The following tools are required to build oneDNN documentation:
Configurations of CPU and GPU engines may introduce additional build time dependencies.
oneDNN CPU engine is used to execute primitives on Intel Architecture Processors, 64-bit Arm Architecture (AArch64) processors, 64-bit Power ISA (PPC64) processors, IBMz (s390x), and compatible devices.
The CPU engine is built by default but can be disabled at build time by setting
DNNL_CPU_RUNTIME
to NONE
. In this case, GPU engine must be enabled.
The CPU engine can be configured to use the OpenMP, TBB or SYCL runtime.
The following additional requirements apply:
Some implementations rely on OpenMP 4.0 SIMD extensions. For the best performance results on Intel Architecture Processors we recommend using the Intel C++ Compiler.
Intel Processor Graphics and Xe Architecture graphics are supported by the oneDNN GPU engine. The GPU engine is disabled in the default build configuration. The following additional requirements apply when GPU engine is enabled:
WARNING
NVIDIA GPU support is experimental. General information, build instructions, and implementation limitations are available in the NVIDIA backend readme.
AMD GPU support is experimental. General information, build instructions, and implementation limitations are available in the AMD backend readme.
When oneDNN is built from source, the library runtime dependencies and specific versions are defined by the build environment.
Common dependencies:
libc.so
)libstdc++.so
)libdl.so
)libm.so
)libpthread.so
)Runtime-specific dependencies:
Runtime configuration | Compiler | Dependency |
---|---|---|
DNNL_CPU_RUNTIME=OMP |
GCC | GNU OpenMP runtime (libgomp.so ) |
DNNL_CPU_RUNTIME=OMP |
Intel C/C++ Compiler | Intel OpenMP runtime (libiomp5.so ) |
DNNL_CPU_RUNTIME=OMP |
Clang | Intel OpenMP runtime (libiomp5.so ) |
DNNL_CPU_RUNTIME=TBB |
any | TBB (libtbb.so ) |
DNNL_CPU_RUNTIME=SYCL |
Intel oneAPI DPC++ Compiler | Intel oneAPI DPC++ Compiler runtime (libsycl.so ), TBB (libtbb.so ), OpenCL loader (libOpenCL.so ) |
DNNL_GPU_RUNTIME=OCL |
any | OpenCL loader (libOpenCL.so ) |
DNNL_GPU_RUNTIME=SYCL |
Intel oneAPI DPC++ Compiler | Intel oneAPI DPC++ Compiler runtime (libsycl.so ), OpenCL loader (libOpenCL.so ), oneAPI Level Zero loader (libze_loader.so ) |
Common dependencies:
msvcrt.dll
)Runtime-specific dependencies:
Runtime configuration | Compiler | Dependency |
---|---|---|
DNNL_CPU_RUNTIME=OMP |
Microsoft Visual C++ Compiler | No additional requirements |
DNNL_CPU_RUNTIME=OMP |
Intel C/C++ Compiler | Intel OpenMP runtime (iomp5.dll ) |
DNNL_CPU_RUNTIME=TBB |
any | TBB (tbb.dll ) |
DNNL_CPU_RUNTIME=SYCL |
Intel oneAPI DPC++ Compiler | Intel oneAPI DPC++ Compiler runtime (sycl.dll ), TBB (tbb.dll ), OpenCL loader (OpenCL.dll ) |
DNNL_GPU_RUNTIME=OCL |
any | OpenCL loader (OpenCL.dll ) |
DNNL_GPU_RUNTIME=SYCL |
Intel oneAPI DPC++ Compiler | Intel oneAPI DPC++ Compiler runtime (sycl.dll ), OpenCL loader (OpenCL.dll ), oneAPI Level Zero loader (ze_loader.dll ) |
Common dependencies:
libc++.dylib
, libSystem.dylib
)Runtime-specific dependencies:
Runtime configuration | Compiler | Dependency |
---|---|---|
DNNL_CPU_RUNTIME=OMP |
Intel C/C++ Compiler | Intel OpenMP runtime (libiomp5.dylib ) |
DNNL_CPU_RUNTIME=TBB |
any | TBB (libtbb.dylib ) |
CPU engine was validated on RedHat* Enterprise Linux 7 with
on Windows Server* 2016 with
on macOS 11 (Big Sur) with
GPU engine was validated on Ubuntu* 20.04 with
on Windows Server 2019 with
See the README included in the corresponding binary package.
Please submit your questions, feature requests, and bug reports on the GitHub issues page.
You may reach out to project maintainers privately at [email protected].
We welcome community contributions to oneDNN. If you have an idea on how to improve the library:
For additional details, see contribution guidelines.
This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.
oneDNN is licensed under Apache License Version 2.0. Refer to the "LICENSE" file for the full license text and copyright notice.
This distribution includes third party software governed by separate license terms.
3-clause BSD license:
2-clause BSD license:
Apache License Version 2.0:
Boost Software License, Version 1.0:
MIT License:
This third party software, even if included with the distribution of the Intel software, may be governed by separate license terms, including without limitation, third party license terms, other Intel software license terms, and open source software license terms. These separate license terms govern your use of the third party programs as set forth in the "THIRD-PARTY-PROGRAMS" file.
See Intel's Security Center for information on how to report a potential security issue or vulnerability.
See also: Security Policy
Intel, the Intel logo, Arc, Intel Atom, Intel Core, Iris, OpenVINO, the OpenVINO logo, Pentium, VTune, and Xeon are trademarks of Intel Corporation or its subsidiaries.
* Other names and brands may be claimed as the property of others.
Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
(C) Intel Corporation