Cnn Text Classification Tf

Convolutional Neural Network for Text Classification in Tensorflow
Alternatives To Cnn Text Classification Tf
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Nlp Tutorial13,463
4 days ago36mitJupyter Notebook
Natural Language Processing Tutorial for Deep Learning Researchers
Supervision9,670572 days ago43December 08, 202399mitPython
We write your reusable computer vision tools. 💜
Text_classification7,628
5 months ago45mitPython
all kinds of text classification models and more with deep learning
Tensorflow_cookbook6,085
10 months ago28mitJupyter Notebook
Code for Tensorflow Machine Learning Cookbook
Cnn Text Classification Tf5,256
4 years ago110apache-2.0Python
Convolutional Neural Network for Text Classification in Tensorflow
Tensorflow Book4,443
4 years ago14mitJupyter Notebook
Accompanying source code for Machine Learning with TensorFlow. Refer to the book for step-by-step explanations.
Pointnet4,396
3 months ago176otherPython
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Tensorflow Tutorial3,873
3 years ago7mitPython
Tensorflow tutorial from basic to hard
Text Classification Cnn Rnn2,950
5 years ago16mitPython
CNN-RNN中文文本分类,基于TensorFlow
Pipcook2,488382 days ago104May 13, 2021111apache-2.0TypeScript
Machine learning platform for Web developers
Alternatives To Cnn Text Classification Tf
Select To Compare


Alternative Project Comparisons
Readme

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post.

It is slightly simplified implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in Tensorflow.

Requirements

  • Python 3
  • Tensorflow > 0.12
  • Numpy

Training

Print parameters:

./train.py --help
optional arguments:
  -h, --help            show this help message and exit
  --embedding_dim EMBEDDING_DIM
                        Dimensionality of character embedding (default: 128)
  --filter_sizes FILTER_SIZES
                        Comma-separated filter sizes (default: '3,4,5')
  --num_filters NUM_FILTERS
                        Number of filters per filter size (default: 128)
  --l2_reg_lambda L2_REG_LAMBDA
                        L2 regularizaion lambda (default: 0.0)
  --dropout_keep_prob DROPOUT_KEEP_PROB
                        Dropout keep probability (default: 0.5)
  --batch_size BATCH_SIZE
                        Batch Size (default: 64)
  --num_epochs NUM_EPOCHS
                        Number of training epochs (default: 100)
  --evaluate_every EVALUATE_EVERY
                        Evaluate model on dev set after this many steps
                        (default: 100)
  --checkpoint_every CHECKPOINT_EVERY
                        Save model after this many steps (default: 100)
  --allow_soft_placement ALLOW_SOFT_PLACEMENT
                        Allow device soft device placement
  --noallow_soft_placement
  --log_device_placement LOG_DEVICE_PLACEMENT
                        Log placement of ops on devices
  --nolog_device_placement

Train:

./train.py

Evaluating

./eval.py --eval_train --checkpoint_dir="./runs/1459637919/checkpoints/"

Replace the checkpoint dir with the output from the training. To use your own data, change the eval.py script to load your data.

References

Popular Tensorflow Projects
Popular Classification Projects
Popular Machine Learning Categories

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Network
Tensorflow
Neural Network
Neural
Classification
Convolutional Neural Networks
Text Classification