Graph Neural Networks with Keras and Tensorflow 2.
Alternatives To Spektral
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Keras59,44557811 hours ago80June 27, 202398apache-2.0Python
Deep Learning for humans
Data Science Ipython Notebooks25,242
3 months ago34otherPython
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Netron24,08246917 hours ago587August 01, 202324mitJavaScript
Visualizer for neural network, deep learning, and machine learning models
8 days ago5March 05, 20191,974otherPython
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow
100 Days Of Ml Code20,187
a year ago9mitJupyter Notebook
D2l En18,967
a month ago2November 13, 202295otherPython
Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 500 universities from 70 countries including Stanford, MIT, Harvard, and Cambridge.
Ncnn17,978113 hours ago24November 28, 20221,046otherC++
ncnn is a high-performance neural network inference framework optimized for the mobile platform
Onnx15,604148394a day ago29May 04, 2023313apache-2.0Python
Open standard for machine learning interoperability
Best Of Ml Python14,484
a day ago18cc-by-sa-4.0
🏆 A ranked list of awesome machine learning Python libraries. Updated weekly.
Horovod13,57720112 days ago77June 12, 2023360otherPython
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.
Alternatives To Spektral
Select To Compare

Alternative Project Comparisons

Welcome to Spektral

Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs).

You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.

Spektral implements some of the most popular layers for graph deep learning, including:

and many others (see convolutional layers).

You can also find pooling layers, including:

Spektral also includes lots of utilities for representing, manipulating, and transforming graphs in your graph deep learning projects.

See how to get started with Spektral and have a look at the examples for some templates.

The source code of the project is available on Github.
Read the documentation here.

If you want to cite Spektral in your work, refer to our paper:

Graph Neural Networks in TensorFlow and Keras with Spektral
Daniele Grattarola and Cesare Alippi


Spektral is compatible with Python 3.6 and above, and is tested on the latest versions of Ubuntu, MacOS, and Windows. Other Linux distros should work as well.

The simplest way to install Spektral is from PyPi:

pip install spektral

To install Spektral from source, run this in a terminal:

git clone https://github.com/danielegrattarola/spektral.git
cd spektral
python setup.py install  # Or 'pip install .'

To install Spektral on Google Colab:

! pip install spektral

New in Spektral 1.0

The 1.0 release of Spektral is an important milestone for the library and brings many new features and improvements.

If you have already used Spektral in your projects, the only major change that you need to be aware of is the new datasets API.

This is a summary of the new features and changes:

  • The new Graph and Dataset containers standardize how Spektral handles data. This does not impact your models, but makes it easier to use your data in Spektral.
  • The new Loader class hides away all the complexity of creating graph batches. Whether you want to write a custom training loop or use Keras' famous model-dot-fit approach, you only need to worry about the training logic and not the data.
  • The new transforms module implements a wide variety of common operations on graphs, that you can now apply() to your datasets.
  • The new GeneralConv and GeneralGNN classes let you build models that are, well... general. Using state-of-the-art results from recent literature means that you don't need to worry about which layers or architecture to choose. The defaults will work well everywhere.
  • New datasets: QM7 and ModelNet10/40, and a new wrapper for OGB datasets.
  • Major clean-up of the library's structure and dependencies.
  • New examples and tutorials.


Spektral is an open-source project available on Github, and contributions of all types are welcome. Feel free to open a pull request if you have something interesting that you want to add to the framework.

The contribution guidelines are available here and a list of feature requests is available here.

Popular Tensorflow Projects
Popular Keras Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Deep Learning
Neural Network