Semantic Segmentation Pytorch

Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Alternatives To Semantic Segmentation Pytorch
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Cvat9,058
21 hours ago2September 08, 2022481mitTypeScript
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale.
Awesome Semantic Segmentation8,065
2 years ago13
:metal: awesome-semantic-segmentation
Segmentation_models.pytorch6,9822342 days ago10November 18, 202126mitPython
Segmentation models with pretrained backbones. PyTorch.
Pytorch Unet6,465
20 days ago49gpl-3.0Python
PyTorch implementation of the U-Net for image semantic segmentation with high quality images
Mmsegmentation5,4632a day ago30July 01, 2022296apache-2.0Python
OpenMMLab Semantic Segmentation Toolbox and Benchmark.
Gluon Cv5,42215442 months ago1,514July 07, 202261apache-2.0Python
Gluon CV Toolkit
Semantic Segmentation Pytorch4,559
2 years ago1September 09, 202156bsd-3-clausePython
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset
Pytorch Semseg3,297
2 months ago3February 09, 2018131mitPython
Semantic Segmentation Architectures Implemented in PyTorch
Imgclsmob2,3994a year ago67September 21, 20216mitPython
Sandbox for training deep learning networks
Awesome Semantic Segmentation Pytorch2,399
3 months ago114apache-2.0Python
Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)
Alternatives To Semantic Segmentation Pytorch
Select To Compare


Alternative Project Comparisons
Readme

Semantic Segmentation on MIT ADE20K dataset in PyTorch

This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing dataset (http://sceneparsing.csail.mit.edu/).

ADE20K is the largest open source dataset for semantic segmentation and scene parsing, released by MIT Computer Vision team. Follow the link below to find the repository for our dataset and implementations on Caffe and Torch7: CSAILVision/sceneparsing

If you simply want to play with our demo, please try this link: http://scenesegmentation.csail.mit.edu You can upload your own photo and parse it!

You can also use this colab notebook playground here to tinker with the code for segmenting an image.

All pretrained models can be found at: http://sceneparsing.csail.mit.edu/model/pytorch

[From left to right: Test Image, Ground Truth, Predicted Result]

Color encoding of semantic categories can be found here: https://docs.google.com/spreadsheets/d/1se8YEtb2detS7OuPE86fXGyD269pMycAWe2mtKUj2W8/edit?usp=sharing

Updates

  • HRNet model is now supported.
  • We use configuration files to store most options which were in argument parser. The definitions of options are detailed in config/defaults.py.
  • We conform to Pytorch practice in data preprocessing (RGB [0, 1], substract mean, divide std).

Highlights

Syncronized Batch Normalization on PyTorch

This module computes the mean and standard-deviation across all devices during training. We empirically find that a reasonable large batch size is important for segmentation. We thank Jiayuan Mao for his kind contributions, please refer to Synchronized-BatchNorm-PyTorch for details.

The implementation is easy to use as:

  • It is pure-python, no C++ extra extension libs.
  • It is completely compatible with PyTorch's implementation. Specifically, it uses unbiased variance to update the moving average, and use sqrt(max(var, eps)) instead of sqrt(var + eps).
  • It is efficient, only 20% to 30% slower than UnsyncBN.

Dynamic scales of input for training with multiple GPUs

For the task of semantic segmentation, it is good to keep aspect ratio of images during training. So we re-implement the DataParallel module, and make it support distributing data to multiple GPUs in python dict, so that each gpu can process images of different sizes. At the same time, the dataloader also operates differently.

Now the batch size of a dataloader always equals to the number of GPUs, each element will be sent to a GPU. It is also compatible with multi-processing. Note that the file index for the multi-processing dataloader is stored on the master process, which is in contradict to our goal that each worker maintains its own file list. So we use a trick that although the master process still gives dataloader an index for __getitem__ function, we just ignore such request and send a random batch dict. Also, the multiple workers forked by the dataloader all have the same seed, you will find that multiple workers will yield exactly the same data, if we use the above-mentioned trick directly. Therefore, we add one line of code which sets the defaut seed for numpy.random before activating multiple worker in dataloader.

State-of-the-Art models

  • PSPNet is scene parsing network that aggregates global representation with Pyramid Pooling Module (PPM). It is the winner model of ILSVRC'16 MIT Scene Parsing Challenge. Please refer to https://arxiv.org/abs/1612.01105 for details.
  • UPerNet is a model based on Feature Pyramid Network (FPN) and Pyramid Pooling Module (PPM). It doesn't need dilated convolution, an operator that is time-and-memory consuming. Without bells and whistles, it is comparable or even better compared with PSPNet, while requiring much shorter training time and less GPU memory. Please refer to https://arxiv.org/abs/1807.10221 for details.
  • HRNet is a recently proposed model that retains high resolution representations throughout the model, without the traditional bottleneck design. It achieves the SOTA performance on a series of pixel labeling tasks. Please refer to https://arxiv.org/abs/1904.04514 for details.

Supported models

We split our models into encoder and decoder, where encoders are usually modified directly from classification networks, and decoders consist of final convolutions and upsampling. We have provided some pre-configured models in the config folder.

Encoder:

  • MobileNetV2dilated
  • ResNet18/ResNet18dilated
  • ResNet50/ResNet50dilated
  • ResNet101/ResNet101dilated
  • HRNetV2 (W48)

Decoder:

  • C1 (one convolution module)
  • C1_deepsup (C1 + deep supervision trick)
  • PPM (Pyramid Pooling Module, see PSPNet paper for details.)
  • PPM_deepsup (PPM + deep supervision trick)
  • UPerNet (Pyramid Pooling + FPN head, see UperNet for details.)

Performance:

IMPORTANT: The base ResNet in our repository is a customized (different from the one in torchvision). The base models will be automatically downloaded when needed.

Architecture MultiScale Testing Mean IoU Pixel Accuracy(%) Overall Score Inference Speed(fps)
MobileNetV2dilated + C1_deepsup No 34.84 75.75 54.07 17.2
Yes 33.84 76.80 55.32 10.3
MobileNetV2dilated + PPM_deepsup No 35.76 77.77 56.27 14.9
Yes 36.28 78.26 57.27 6.7
ResNet18dilated + C1_deepsup No 33.82 76.05 54.94 13.9
Yes 35.34 77.41 56.38 5.8
ResNet18dilated + PPM_deepsup No 38.00 78.64 58.32 11.7
Yes 38.81 79.29 59.05 4.2
ResNet50dilated + PPM_deepsup No 41.26 79.73 60.50 8.3
Yes 42.14 80.13 61.14 2.6
ResNet101dilated + PPM_deepsup No 42.19 80.59 61.39 6.8
Yes 42.53 80.91 61.72 2.0
UperNet50 No 40.44 79.80 60.12 8.4
Yes 41.55 80.23 60.89 2.9
UperNet101 No 42.00 80.79 61.40 7.8
Yes 42.66 81.01 61.84 2.3
HRNetV2 No 42.03 80.77 61.40 5.8
Yes 43.20 81.47 62.34 1.9

The training is benchmarked on a server with 8 NVIDIA Pascal Titan Xp GPUs (12GB GPU memory), the inference speed is benchmarked a single NVIDIA Pascal Titan Xp GPU, without visualization.

Environment

The code is developed under the following configurations.

  • Hardware: >=4 GPUs for training, >=1 GPU for testing (set [--gpus GPUS] accordingly)
  • Software: Ubuntu 16.04.3 LTS, CUDA>=8.0, Python>=3.5, PyTorch>=0.4.0
  • Dependencies: numpy, scipy, opencv, yacs, tqdm

Quick start: Test on an image using our trained model

  1. Here is a simple demo to do inference on a single image:
chmod +x demo_test.sh
./demo_test.sh

This script downloads a trained model (ResNet50dilated + PPM_deepsup) and a test image, runs the test script, and saves predicted segmentation (.png) to the working directory.

  1. To test on an image or a folder of images ($PATH_IMG), you can simply do the following:
python3 -u test.py --imgs $PATH_IMG --gpu $GPU --cfg $CFG

Training

  1. Download the ADE20K scene parsing dataset:
chmod +x download_ADE20K.sh
./download_ADE20K.sh
  1. Train a model by selecting the GPUs ($GPUS) and configuration file ($CFG) to use. During training, checkpoints by default are saved in folder ckpt.
python3 train.py --gpus $GPUS --cfg $CFG 
  • To choose which gpus to use, you can either do --gpus 0-7, or --gpus 0,2,4,6.

For example, you can start with our provided configurations:

  • Train MobileNetV2dilated + C1_deepsup
python3 train.py --gpus GPUS --cfg config/ade20k-mobilenetv2dilated-c1_deepsup.yaml
  • Train ResNet50dilated + PPM_deepsup
python3 train.py --gpus GPUS --cfg config/ade20k-resnet50dilated-ppm_deepsup.yaml
  • Train UPerNet101
python3 train.py --gpus GPUS --cfg config/ade20k-resnet101-upernet.yaml
  1. You can also override options in commandline, for example python3 train.py TRAIN.num_epoch 10.

Evaluation

  1. Evaluate a trained model on the validation set. Add VAL.visualize True in argument to output visualizations as shown in teaser.

For example:

  • Evaluate MobileNetV2dilated + C1_deepsup
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-mobilenetv2dilated-c1_deepsup.yaml
  • Evaluate ResNet50dilated + PPM_deepsup
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-resnet50dilated-ppm_deepsup.yaml
  • Evaluate UPerNet101
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-resnet101-upernet.yaml

Integration with other projects

This library can be installed via pip to easily integrate with another codebase

pip install git+https://github.com/CSAILVision/[email protected]

Now this library can easily be consumed programmatically. For example

from mit_semseg.config import cfg
from mit_semseg.dataset import TestDataset
from mit_semseg.models import ModelBuilder, SegmentationModule

Reference

If you find the code or pre-trained models useful, please cite the following papers:

Semantic Understanding of Scenes through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba. International Journal on Computer Vision (IJCV), 2018. (https://arxiv.org/pdf/1608.05442.pdf)

@article{zhou2018semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Xiao, Tete and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={International Journal on Computer Vision},
  year={2018}
}

Scene Parsing through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba. Computer Vision and Pattern Recognition (CVPR), 2017. (http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf)

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}
Popular Pytorch Projects
Popular Semantic Segmentation Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Pytorch
Semantic Segmentation