M2cgen

Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart, Haskell, Ruby, F#, Rust) with zero dependencies
Alternatives To M2cgen
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
100 Days Of Ml Code40,344
3 months ago61mit
100 Days of ML Coding
Machine Learning6,628
8 months ago3Python
:zap:机器学习实战(Python3):kNN、决策树、贝叶斯、逻辑回归、SVM、线性回归、树回归
Tensorflow_cookbook6,085
2 months ago28mitJupyter Notebook
Code for Tensorflow Machine Learning Cookbook
Easypr5,583
4 years ago69apache-2.0C++
An easy, flexible, and accurate plate recognition project for Chinese licenses in unconstrained situations.
Machinelearning4,650
6 days ago31Python
Basic Machine Learning and Deep Learning
M2cgen2,41133 months ago13April 26, 202243mitPython
Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart, Haskell, Ruby, F#, Rust) with zero dependencies
Ios_ml1,406
5 years ago2
List of Machine Learning, AI, NLP solutions for iOS. The most recent version of this article can be found on my blog.
Twitter Sentiment Analysis1,322
3 months ago20mitPython
Sentiment analysis on tweets using Naive Bayes, SVM, CNN, LSTM, etc.
Osqp1,31832 days ago2January 06, 202194apache-2.0C
The Operator Splitting QP Solver
Play With Machine Learning Algorithms1,164
10 months ago1Jupyter Notebook
Code of my MOOC Course <Play with Machine Learning Algorithms>. Updated contents and practices are also included. 我在慕课网上的课程《Python3 入门机器学习》示例代码。课程的更多更新内容及辅助练习也将逐步添加进这个代码仓。
Alternatives To M2cgen
Select To Compare


Alternative Project Comparisons
Readme

m2cgen

GitHub Actions Status Coverage Status License: MIT Python Versions PyPI Version Downloads

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#, PowerShell, R, PHP, Dart, Haskell, Ruby, F#, Rust, Elixir).

Installation

Supported Python version is >= 3.7.

pip install m2cgen

Development

Make sure the following command runs successfully before submitting a PR:

make pre-pr

Alternatively you can run the Docker version of the same command:

make docker-build docker-pre-pr

Supported Languages

  • C
  • C#
  • Dart
  • F#
  • Go
  • Haskell
  • Java
  • JavaScript
  • PHP
  • PowerShell
  • Python
  • R
  • Ruby
  • Rust
  • Visual Basic (VBA-compatible)
  • Elixir

Supported Models

Classification Regression
Linear
  • scikit-learn
    • LogisticRegression
    • LogisticRegressionCV
    • PassiveAggressiveClassifier
    • Perceptron
    • RidgeClassifier
    • RidgeClassifierCV
    • SGDClassifier
  • lightning
    • AdaGradClassifier
    • CDClassifier
    • FistaClassifier
    • SAGAClassifier
    • SAGClassifier
    • SDCAClassifier
    • SGDClassifier
  • scikit-learn
    • ARDRegression
    • BayesianRidge
    • ElasticNet
    • ElasticNetCV
    • GammaRegressor
    • HuberRegressor
    • Lars
    • LarsCV
    • Lasso
    • LassoCV
    • LassoLars
    • LassoLarsCV
    • LassoLarsIC
    • LinearRegression
    • OrthogonalMatchingPursuit
    • OrthogonalMatchingPursuitCV
    • PassiveAggressiveRegressor
    • PoissonRegressor
    • RANSACRegressor(only supported regression estimators can be used as a base estimator)
    • Ridge
    • RidgeCV
    • SGDRegressor
    • TheilSenRegressor
    • TweedieRegressor
  • StatsModels
    • Generalized Least Squares (GLS)
    • Generalized Least Squares with AR Errors (GLSAR)
    • Generalized Linear Models (GLM)
    • Ordinary Least Squares (OLS)
    • [Gaussian] Process Regression Using Maximum Likelihood-based Estimation (ProcessMLE)
    • Quantile Regression (QuantReg)
    • Weighted Least Squares (WLS)
  • lightning
    • AdaGradRegressor
    • CDRegressor
    • FistaRegressor
    • SAGARegressor
    • SAGRegressor
    • SDCARegressor
    • SGDRegressor
SVM
  • scikit-learn
    • LinearSVC
    • NuSVC
    • OneClassSVM
    • SVC
  • lightning
    • KernelSVC
    • LinearSVC
  • scikit-learn
    • LinearSVR
    • NuSVR
    • SVR
  • lightning
    • LinearSVR
Tree
  • DecisionTreeClassifier
  • ExtraTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeRegressor
Random Forest
  • ExtraTreesClassifier
  • LGBMClassifier(rf booster only)
  • RandomForestClassifier
  • XGBRFClassifier
  • ExtraTreesRegressor
  • LGBMRegressor(rf booster only)
  • RandomForestRegressor
  • XGBRFRegressor
Boosting
  • LGBMClassifier(gbdt/dart/goss booster only)
  • XGBClassifier(gbtree(including boosted forests)/gblinear booster only)
    • LGBMRegressor(gbdt/dart/goss booster only)
    • XGBRegressor(gbtree(including boosted forests)/gblinear booster only)

    You can find versions of packages with which compatibility is guaranteed by CI tests here. Other versions can also be supported but they are untested.

    Classification Output

    Linear / Linear SVM / Kernel SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; signed distance of the sample to the hyperplane per each class.

    Comment

    The output is consistent with the output of LinearClassifierMixin.decision_function.

    SVM

    Outlier detection

    Scalar value; signed distance of the sample to the separating hyperplane: positive for an inlier and negative for an outlier.

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).

    Comment

    The output is consistent with the output of BaseSVC.decision_function when the decision_function_shape is set to ovo.

    Tree / Random Forest / Boosting

    Binary

    Vector value; class probabilities.

    Multiclass

    Vector value; class probabilities.

    Comment

    The output is consistent with the output of the predict_proba method of DecisionTreeClassifier / ExtraTreeClassifier / ExtraTreesClassifier / RandomForestClassifier / XGBRFClassifier / XGBClassifier / LGBMClassifier.

    Usage

    Here's a simple example of how a linear model trained in Python environment can be represented in Java code:

    from sklearn.datasets import load_diabetes
    from sklearn import linear_model
    import m2cgen as m2c
    
    X, y = load_diabetes(return_X_y=True)
    
    estimator = linear_model.LinearRegression()
    estimator.fit(X, y)
    
    code = m2c.export_to_java(estimator)
    

    Generated Java code:

    public class Model {
        public static double score(double[] input) {
            return ((((((((((152.1334841628965) + ((input[0]) * (-10.012197817470472))) + ((input[1]) * (-239.81908936565458))) + ((input[2]) * (519.8397867901342))) + ((input[3]) * (324.39042768937657))) + ((input[4]) * (-792.1841616283054))) + ((input[5]) * (476.74583782366153))) + ((input[6]) * (101.04457032134408))) + ((input[7]) * (177.06417623225025))) + ((input[8]) * (751.2793210873945))) + ((input[9]) * (67.62538639104406));
        }
    }
    

    You can find more examples of generated code for different models/languages here.

    CLI

    m2cgen can be used as a CLI tool to generate code using serialized model objects (pickle protocol):

    $ m2cgen <pickle_file> --language <language> [--indent <indent>] [--function_name <function_name>]
             [--class_name <class_name>] [--module_name <module_name>] [--package_name <package_name>]
             [--namespace <namespace>] [--recursion-limit <recursion_limit>]
    

    Don't forget that for unpickling serialized model objects their classes must be defined in the top level of an importable module in the unpickling environment.

    Piping is also supported:

    $ cat <pickle_file> | m2cgen --language <language>
    

    FAQ

    Q: Generation fails with RecursionError: maximum recursion depth exceeded error.

    A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>).

    Q: Generation fails with ImportError: No module named <module_name_here> error while transpiling model from a serialized model object.

    A: This error indicates that pickle protocol cannot deserialize model object. For unpickling serialized model objects, it is required that their classes must be defined in the top level of an importable module in the unpickling environment. So installation of package which provided model's class definition should solve the problem.

    Q: Generated by m2cgen code provides different results for some inputs compared to original Python model from which the code were obtained.

    A: Some models force input data to be particular type during prediction phase in their native Python libraries. Currently, m2cgen works only with float64 (double) data type. You can try to cast your input data to another type manually and check results again. Also, some small differences can happen due to specific implementation of floating-point arithmetic in a target language.

    Popular Machine Learning Projects
    Popular Svm Projects
    Popular Machine Learning Categories
    Related Searches

    Get A Weekly Email With Trending Projects For These Categories
    No Spam. Unsubscribe easily at any time.
    Javascript
    Python
    Java
    Php
    Ruby
    C
    C Sharp
    Go
    Rust
    Dart
    R
    Machine Learning
    Haskell
    Svm
    Scikit Learn
    Lightning
    Xgboost
    Dartlang
    Lightgbm