Jmastats

Download Weather Data from Japan Meteorological Agency Website
Alternatives To Jmastats
Select To Compare


Readme

jmastats

CRAN status CRANlogs downloads DOI

jmastats R

CRAN

install.packages("jmastats")
install.packages(
   "jmastats", 
   repos = c(uribo = "https://uribo.r-universe.dev", getOption("repos")))

  • R
    • sf
    • parse_unit()SIunits

library(jmastats)

item block_no year month day

# : hourly ()
# : 47646 
# : 202211
jma_collect(item = "hourly", block_no = 47646, year = 2022, month = 1, day = 1)

block_no nearest_station()

# 
nearest_station(longitude = 140.112, latitude = 36.083)

``csvread_jma_weather()

# csv
read_jma_weather(system.file("dummy/dl_data.csv", package = "jmastats"))

RMCS Tokyo

read_rsmc_besttrack()

read_rsmc_besttrack(path = system.file("dummy/bst.txt", package = "jmastats")) |> 
  dplyr::glimpse()
#> Rows: 2
#> Columns: 22
#> $ datetime                                                    <dttm> 1991-09-2
#> $ indicator_002                                               <chr> "002", "00
#> $ grade                                                       <chr> "5", "5"
#> $ `central_pressure(hPa)`                                     <dbl> 935, 994
#> $ `maximum_sustained_wind_speed(knot)`                        <dbl> 95, NA
#> $ `_direction_of_the_longest_radius_of_50kt_winds_or_greater` <chr> "3", NA
#> $ `_the_longest_radius_of_50kt_winds_or_greater(nm)`          <chr> "0180", NA
#> $ `_the_shortest_radius_of_50kt_winds_or_greater(nm)`         <chr> "0140", NA
#> $ `_direction_of_the_longest_radius_of_30kt_winds_or_greater` <chr> "3", NA
#> $ `_the_longest_radius_of_30kt_winds_or_greater(nm)`          <chr> "0400", NA
#> $ `_the_shortest_radius_of_30kt_winds_or_greater(nm)`         <chr> "0260", NA
#> $ indicator_of_landfall_or_passage                            <chr> "#", NA
#> $ international_number                                        <chr> "9119", "9
#> $ geometry                                                    <POINT []> POINT (129
#> $ indicator_66666                                             <dbl> 66666, 666
#> $ nrow                                                        <dbl> 1, 1
#> $ tropical_cyclone_number                                     <chr> "0045", "0
#> $ international_number_copy                                   <chr> "9119", "9
#> $ flag_last_data_line                                         <chr> "0", "0"
#> $ DTM                                                         <dbl> 6, 6
#> $ storm_name                                                  <fct> MIRREILE, 
#> $ last_update                                                 <date> 1992-07-01

URL

read_rsmc_besttrack(path = "https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/Besttracks/bst2023.txt")

read_rsmc_besttrack()(sf)track_combine()``read_rsmc_besttrack()

read_rsmc_besttrack(path = system.file("dummy/bst.txt", package = "jmastats")) |> 
  track_combine(group_vars = "storm_name")

XML

read_kishou_feed("high", type = "regular")

read_kishou_feed("low", "other")

# URL
read_tide_level("https://www.data.jma.go.jp/gmd/kaiyou/data/db/tide/suisan/txt/2020/TK.txt")
# URL
read_tide_level(.year = 2020, .month = 2, .stn = "TK")
# 
read_tide_level(system.file("dummy/tide.txt", package = "jmastats"))
#> New names:
#> New names:
#> New names:
#> New names:
#>  `hm` -> `hm...1`
#>  `hm` -> `hm...2`
#>  `hm` -> `hm...3`
#>  `hm` -> `hm...4`
#> # A tibble: 1  42
#>   hry_00 hry_01 hry_02 hry_03 hry_04 hry_05 hry_06 hry_07 hry_08 hry_09 hry_10
#>     [cm]   [cm]   [cm]   [cm]   [cm]   [cm]   [cm]   [cm]   [cm]   [cm]   [cm]
#> 1    128    127    122    115    107    102    101    106    117    132    146
#> #  31 more variables: hry_11 [cm], hry_12 [cm], hry_13 [cm], hry_14 [cm],
#> #   hry_15 [cm], hry_16 [cm], hry_17 [cm], hry_18 [cm], hry_19 [cm],
#> #   hry_20 [cm], hry_21 [cm], hry_22 [cm], hry_23 [cm], date <date>, stn <chr>,
#> #   low_tide_hm_obs1 <time>, low_tide_level_obs1 [cm],
#> #   high_tide_hm_obs1 <time>, high_tide_level_obs1 [cm],
#> #   low_tide_hm_obs2 <time>, low_tide_level_obs2 [cm],
#> #   high_tide_hm_obs2 <time>, high_tide_level_obs2 [cm], 

cscvread_eqdb_csv()

read_eqdb_csv(system.file("dummy/eqdb.csv", package = "jmastats"))
#> 
#>  : 2023-01-01 00:00:00
#>  : 
#>  : 3530.9N
#>  : 14053.9E
#> ! : 37 km
#> ! : 4.6
#> ! : 
#> # A tibble: 2  4
#>                   
#>   <chr>          <chr> <chr>          <lgl>             
#> 1  2      TRUE              
#> 2  2      FALSE

block_no

data("stations", package = "jmastats")

station_type

stnread_tide_level()

data("tide_station", package = "jmastats")

data("earthquake_station", package = "jmastats")

Uryu S (2023). _jmastats: Download Weather Data from Japan Meteorological
Agency Website_. R package version 0.2.0,
<https://CRAN.R-project.org/package=jmastats>.



@Manual{,
  title = {jmastats: Download Weather Data from Japan Meteorological Agency Website},
  author = {Shinya Uryu},
  year = {2023},
  note = {R package version 0.2.0},
  url = {https://CRAN.R-project.org/package=jmastats},
}

Popular Command Line Interface Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
R
Weather