Awesome Open Source
Awesome Open Source

Build Status Test Coverage Examples GitHub

Control Surface

An Arduino library for MIDI controllers and control surfaces. It includes a general-purpose MIDI abstraction layer as well, which can be useful for any MIDI-related project.
Control surfaces with both MIDI outputs (potentiometers, buttons, etc.) and MIDI inputs (LEDs, displays, etc.) are supported.

Table of contents
¶ Overview
¶ Example usage
¶ Getting started
¶ Documentation
¶ Work in progress
¶ Supported boards
¶ Information for developers
¶ Change log and updating


This library turns your Arduino-compatible board into a MIDI control surface.
Just connect some push buttons, potentiometers, LEDs ... and declare them in your code.

The following sections give a brief overview of the features of the library.

MIDI Interfaces

  • MIDI over USB
  • Serial MIDI (e.g. 5-pin DIN MIDI)
  • Debug MIDI (prints out the messages in a readable format, and allows you to input text based messages, like a MIDI monitor)
  • MIDI over Bluetooth LE
  • AppleMIDI over WiFi or Ethernet

MIDI Interfaces documentation

MIDI Control Output

  • Push buttons and toggle switches
  • Potentiometers, faders and other analog sensors
  • Rotary encoders
  • Scanning keyboard matrices

Digital inputs are debounced, and analog inputs are filtered using digital filters and hysteresis. This results in high accuracy without noise, without introducing latency.

These MIDI control outputs can be used to send MIDI notes, Control Change, Pitch Bend, Program/Patch change, etc.

MIDI Output Elements documentation

MIDI Control Input

  • LEDs (e.g. to indicate whether a track is muted/armed/soloed)
  • LED rings (e.g. to indicate the position of a pan knob)
  • LED strips (using the FastLED library)
  • VU meters
  • OLED displays
  • 7-segment displays

A large portion of the Mackie Control Universal (MCU) protocol is implemented.

MIDI Input Elements documentation

Bank support

All controls can be arranged in banks: for example, if you have only 4 physical faders, you can make them bankable, so they can be used to control the volume of many different tracks, by selecting the corresponding bank.

Selecting a bank can be done using push buttons, rotary encoders, etc.

Apart from banks and bank selectors, you can also add transposers to change the key of your notes, for example.

Extended input/output

In order to save some IO pins, the library natively supports multiplexers (e.g. 74HC4051 or 74HC4067) to read many switches or potentiometers, Shift Registers (e.g. 74HC595) to drive many LEDs, MAX7219 LED drivers, etc.

Extended IO documentation


If you are using a Teensy 3.x or 4.x, you can use it as a USB audio interface. Just add an I²S DAC (e.g. PCM5102) and 5 lines of code, and you can start playing audio through your Teensy, by combining Control Surface with the Teensy Audio library.
You can also add volume controls and VU meters for these audio connections.

Teensy Audio documentation

Modular and extensible

Thanks to the structure of the library, you can easily add your own MIDI or display elements, using some minimal, high level code. All low level stuff is completely reusable (e.g. all MIDI operations, debouncing switches, filtering analog inputs, and so on).

Example usage

A complete sketch for a MIDI controller with a potentiometer that sends out MIDI Control Change message can be written in just five lines of code:

#include <Control_Surface.h>

USBMIDI_Interface midi;
CCPotentiometer pot { A0, MIDI_CC::General_Purpose_Controller_1 };

void setup() { Control_Surface.begin(); }
void loop() { Control_Surface.loop(); }

Larger MIDI controllers can implemented very easily as well, with clean and easy to modify code.
The following sketch is for 8 potentiometers (connected using an analog multiplexer) that send out MIDI Control Change messages over USB.

#include <Control_Surface.h>  // Include the library
USBMIDI_Interface midi;  // Instantiate a MIDI Interface to use
// Instantiate an analog multiplexer
CD74HC4051 mux {
  A0,       // Analog input pin
  {3, 4, 5} // Address pins S0, S1, S2
// Create an array of CCPotentiometer objects that send out MIDI Control Change 
// messages when you turn the potentiometers connected to the 8 inputs of the mux.
CCPotentiometer volumePotentiometers[] {
  {, { MIDI_CC::Channel_Volume, CHANNEL_1 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_2 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_3 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_4 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_5 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_6 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_7 } },
  {, { MIDI_CC::Channel_Volume, CHANNEL_8 } },
void setup() {
  Control_Surface.begin();  // Initialize the Control Surface

void loop() {
  Control_Surface.loop();  // Update the Control Surface

Control Surface supports many types of MIDI inputs. For example, an LED that turns on when a MIDI Note On message for middle C is received:

#include <Control_Surface.h>

USBMIDI_Interface midi;
NoteLED led { LED_BUILTIN, MIDI_Notes::C(4) };

void setup() { Control_Surface.begin(); }
void loop() { Control_Surface.loop(); }

Getting started

See the Getting Started page to get started using the library.
It'll also point you to the Installation Instructions.

The MIDI tutorial might be useful if you want to use Control Surface as a regular MIDI library, for sending and receiving MIDI messages.


The automatically generated Doxygen documentation for this library can be found here:
Test coverage information can be found here:
Code Coverage
Arduino examples can be found here:

Have a look at the modules for an overview of the features of the library, it's the best entry point for the documentation.

You can find an answer to some frequently asked questions on the FAQ page.

Work in progress

  • Adding support for motorized faders
  • Adding more tests (currently at over 560 unit tests)
  • Adding more examples and adding comments to existing examples
  • Finishing the documentation

Supported boards

For each commit, the continuous integration tests compile the examples for the following boards:

  • Arduino UNO
  • Arduino Leonardo
  • Teensy 3.2
  • Arduino Due
  • Arduino Nano Every
  • Arduino Nano 33 IoT
  • Arduino Nano 33 BLE
  • ESP8266
  • ESP32

This covers a very large part of the Arduino platform, and similar boards will also work. For example, the Arduino Nano, Mega, Micro, Pro Micro, Teensy 2.0, Teensy LC, Teensy 3.x, Teensy 4.x are all known to work.

If you have a board that's not supported, please open an issue and let me know!

Note that MIDI over USB and MIDI over Bluetooth are not supported on all boards.
For MIDI over USB support, check out the MIDI over USB documentation page. As a general rule of thumb, if your board is supported by the MIDIUSB library or if it's a Teensy, MIDI over USB should be supported.
MIDI over BLE is currently only supported on ESP32.

Information for developers

Information for people that would like to help improve the Control Surface library can be found here:
It covers installation instructions for developers, instructions for running the tests and generating documentation, a style guide, etc.

Change log and updating


  • (bf8fb66)
    The abbreviated MIDI send functions (such as sendCC()) have been deprecated in favor of the full names (e.g. sendControlChange()). See the MIDI_Sender documentation for a full overview.
  • (cf32e7e)
    Control_Surface.setMIDIInputCallbacks() now takes four arguments instead of three, because a System Common callback was added.
  • (b727931)
    The MIDI note name for the note F has been changed from F to F_ in order to avoid conflicts with the F() macro and its functional equivalent introduced here.
    It is now recommended to use MIDI_Notes::C(4) instead of note(C, 4).
  • (a81bd19)
    Classes that make use of the SPI interface now require you to pass the SPI object as a constructor argument. This allows you to use SPI1 or SPI2 (if available for your hardware).
  • (c6e35b9)
    The NoteBitmapDisplay class has been renamed to BitmapDisplay.
  • (37b6901)
    The NoteValueLED and CCValueLED classes (and similar) have been replaced by NoteLED and CCLED respectively.
    The display elements BitmapDisplay, VPotDisplay, VUDisplay etc. are now generic in the type of value that they display. In most cases, you should be able to update your sketch by adding <> after the type names, e.g. BitmapDisplay<>, VPotDisplay<>, etc.
  • (1a21d13)
    The line numbers of LCDDisplay are now one-based: 1 is the first line and 2 is the second line. This is more consistent with the track parameter and the API of the rest of the library. (Before, the first line was 0 and the second line was 1.)
  • (40e3d7a)
    Control Surface now comes with an Encoder library out of the box. You no longer have to install or include Encoder.h in your sketches.


  • (8a3b1b3)
    Before, Control_Surface.MIDI() was used to get the MIDI interface used by Control Surface. This method was removed, because you can now connect multiple interfaces to Control Surface, using the MIDI Pipe routing system. To send MIDI using Control Surface, you can now use Control_Surface.sendCC(...) and the other similar methods directly.
  • (8a3b1b3)
    For the same reason as the bullet above, the MultiMIDI_Interface was removed, and has been replaced by the MIDI Pipe routing system.
  • (bca6e11)
    The color mapper for NoteRangeFastLED and the like now takes a second parameter that represents the index of the LED within the LED strip.
  • (3c01c7d)
    The maximum supported ADC resolution is now used by default (e.g. 13 bits on Teensy 3.x, 12 bits on ESP32).
    This increases the accuracy of analog inputs and controls for the Control Surface library, but could cause problems if your code uses other libraries that expect the resolution to be 10 bits.
    You can change the default resolution to 10 bits in src/AH/Settings/Settings.hpp if you have to.
  • (31edaa6)
    The mapping function is now applied before applying hysteresis.
    This means that the input and output values of the function should be 16 - ANALOG_FILTER_SHIFT_FACTOR bits wide instead of 7. By default this is 14 bits. You can get the maximum value in a portable way by using the FilteredAnalog<>::getMaxRawValue() function.
    The signature of the mapping function is now analog_t f(analog_t raw), where the return value and raw are both numbers in [0, 16383] by default.

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
c-plus-plus (19,010
arduino (769
esp32 (244
midi (148
arduino-library (141
display (37
led (36
teensy (26