Awesome Open Source
Awesome Open Source

NURBS-Python (geomdl) ^^^^^^^^^^^^^^^^^^^^^

|DOI|_ |PYPI|_ |PYPIDL|_ |ANACONDA|_

|RTD|_ |TRAVISCI|_ |APPVEYOR|_ |CIRCLECI|_ |CODECOV|_

Introduction

NURBS-Python (geomdl) is a pure Python, self-contained, object-oriented B-Spline and NURBS spline library for Python versions 2.7.x, 3.4.x and later.

The following article <https://doi.org/10.1016/j.softx.2018.12.005>_ outlines the design and features of NURBS-Python (geomdl). I would be glad if you would cite it if you have used NURBS-Python (geomdl) in your research::

@article{bingol2019geomdl,
  title={{NURBS-Python}: An open-source object-oriented {NURBS} modeling framework in {Python}},
  author={Bingol, Onur Rauf and Krishnamurthy, Adarsh},
  journal={{SoftwareX}},
  volume={9},
  pages={85--94},
  year={2019},
  publisher={Elsevier},
  doi={https://doi.org/10.1016/j.softx.2018.12.005}
}

Features

NURBS-Python (geomdl) provides convenient data structures and highly customizable API for rational and non-rational splines along with the efficient and extensible implementations of the following algorithms:

  • Spline evaluation
  • Derivative evaluation
  • Knot insertion
  • Knot removal
  • Knot vector refinement
  • Degree elevation
  • Degree reduction
  • Curve and surface fitting via interpolation and least squares approximation

NURBS-Python (geomdl) also provides customizable visualization and animation options via Matplotlib, Plotly and VTK libraries. Please refer to the documentation <http://nurbs-python.readthedocs.io/>_ for more details.

Installation

The easiest way to install NURBS-Python (geomdl) is using pip:

.. code-block:: console

$ pip install --user geomdl

It is also possible to install NURBS-Python (geomdl) using conda:

.. code-block:: console

$ conda install -c orbingol geomdl

Please refer to the Installation and Testing <http://nurbs-python.readthedocs.io/en/latest/install.html>_ section of the documentation for alternative installation methods.

Examples and Documentation

Extra Modules

Author

  • Onur R. Bingol (@orbingol <https://github.com/orbingol>_)

Acknowledgments

Please see CONTRIBUTORS.rst <CONTRIBUTORS.rst>_ file for the acknowledgements.

License

NURBS-Python (geomdl) is licensed under the terms of MIT License <LICENSE>_ and it contains the following modules:

  • six is licensed under the terms of MIT License <https://github.com/benjaminp/six/blob/1.12.0/LICENSE>_
  • backports.functools_lru_cache is licensed under the terms of MIT License <https://github.com/jaraco/backports.functools_lru_cache/blob/1.5/LICENSE>_

.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.815010.svg .. _DOI: https://doi.org/10.5281/zenodo.815010

.. |RTD| image:: https://readthedocs.org/projects/nurbs-python/badge/?version=5.x .. _RTD: https://nurbs-python.readthedocs.io/en/5.x/?badge=5.x

.. |TRAVISCI| image:: https://travis-ci.org/orbingol/NURBS-Python.svg?branch=5.x .. _TRAVISCI: https://travis-ci.org/orbingol/NURBS-Python

.. |APPVEYOR| image:: https://ci.appveyor.com/api/projects/status/github/orbingol/nurbs-python?branch=5.x&svg=true .. _APPVEYOR: https://ci.appveyor.com/project/orbingol/nurbs-python

.. |CIRCLECI| image:: https://circleci.com/gh/orbingol/NURBS-Python/tree/5.x.svg?style=shield .. _CIRCLECI: https://circleci.com/gh/orbingol/NURBS-Python/tree/5.x

.. |PYPI| image:: https://img.shields.io/pypi/v/geomdl.svg .. _PYPI: https://pypi.org/project/geomdl/

.. |PYPIDL| image:: https://img.shields.io/pypi/dm/geomdl.svg .. _PYPIDL: https://pypi.org/project/geomdl/

.. |ANACONDA| image:: https://anaconda.org/orbingol/geomdl/badges/version.svg .. _ANACONDA: https://anaconda.org/orbingol/geomdl

.. |CODECOV| image:: https://codecov.io/gh/orbingol/NURBS-Python/branch/5.x/graph/badge.svg .. _CODECOV: https://codecov.io/gh/orbingol/NURBS-Python


Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
python (51,899
geometry (110
cad (61
computational-geometry (47
bezier (33
volume (31
curve (22

Find Open Source By Browsing 7,000 Topics Across 59 Categories