Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.
A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification. IEEE Transactions on Multimedia (Accepted).
[Journal Version(TMM)] [PDF] [Slides] [Poster]
The codes are expanded on a ReID-baseline , which is open sourced by our co-first author Xingyu Liao.
Another re-implement is developed by python2.7 and pytorch0.4. [link]
A tiny repo with simple re-implement. [link]
Our baseline also achieves great performance on Vehicle ReID task! [link]
With Ranked List loss(CVPR2019)[link], our baseline can achieve better performance. [link]
@InProceedings{Luo_2019_CVPR_Workshops,
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}
@ARTICLE{Luo_2019_Strong_TMM,
author={H. {Luo} and W. {Jiang} and Y. {Gu} and F. {Liu} and X. {Liao} and S. {Lai} and J. {Gu}},
journal={IEEE Transactions on Multimedia},
title={A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification},
year={2019},
pages={1-1},
doi={10.1109/TMM.2019.2958756},
ISSN={1941-0077},
}
We support
Bag of tricks
In the future, we will
Model | Market1501 | DukeMTMC-reID |
---|---|---|
Standard baseline | 87.7 (74.0) | 79.7 (63.8) |
+Warmup | 88.7 (75.2) | 80.6(65.1) |
+Random erasing augmentation | 91.3 (79.3) | 81.5 (68.3) |
+Label smoothing | 91.4 (80.3) | 82.4 (69.3) |
+Last stride=1 | 92.0 (81.7) | 82.6 (70.6) |
+BNNeck | 94.1 (85.7) | 86.2 (75.9) |
+Center loss | 94.5 (85.9) | 86.4 (76.4) |
+Reranking | 95.4 (94.2) | 90.3 (89.1) |
Backbone | Market1501 | DukeMTMC-reID |
---|---|---|
ResNet18 | 91.7 (77.8) | 82.5 (68.8) |
ResNet34 | 92.7 (82.7) | 86.4(73.6) |
ResNet50 | 94.5 (85.9) | 86.4 (76.4) |
ResNet101 | 94.5 (87.1) | 87.6 (77.6) |
ResNet152 | 80.9 (59.0) | 87.5 (78.0) |
SeResNet50 | 94.4 (86.3) | 86.4 (76.5) |
SeResNet101 | 94.6 (87.3) | 87.5 (78.0) |
SeResNeXt50 | 94.9 (87.6) | 88.0 (78.3) |
SeResNeXt101 | 95.0 (88.0) | 88.4 (79.0) |
IBN-Net50-a | 95.0 (88.2) | 90.1 (79.1) |
The designed architecture follows this guide PyTorch-Project-Template, you can check each folder's purpose by yourself.
cd
to folder where you want to download this repo
Run git clone https://github.com/michuanhaohao/reid-strong-baseline.git
Install dependencies:
Prepare dataset
Create a directory to store reid datasets under this repo or outside this repo. Remember to set your path to the root of the dataset in config/defaults.py
for all training and testing or set in every single config file in configs/
or set in every single command.
You can create a directory to store reid datasets under this repo via
cd reid-strong-baseline
mkdir data
(1)Market1501
data/
from http://www.liangzheng.org/Project/project_reid.html
market1501
. The data structure would like:data
market1501 # this folder contains 6 files.
bounding_box_test/
bounding_box_train/
......
(2)DukeMTMC-reID
data/
from https://awesomeopensource.com/project/layumi/DukeMTMC-reID_evaluation#download-dataset
dukemtmc-reid
. The data structure would like:data
dukemtmc-reid
DukeMTMC-reID # this folder contains 8 files.
bounding_box_test/
bounding_box_train/
......
Prepare pretrained model if you don't have
(1)ResNet
from torchvision import models
models.resnet50(pretrained=True)
(2)Senet
import torch.utils.model_zoo as model_zoo
model_zoo.load_url('the pth you want to download (specific urls are listed in ./modeling/backbones/senet.py)')
Then it will automatically download model in ~/.torch/models/
, you should set this path in config/defaults.py
for all training or set in every single training config file in configs/
or set in every single command.
(3)ResNet_IBN_a
You can download the ImageNet pre-trained weights from here [link]
(4)Load your self-trained model
If you want to continue your train process based on your self-trained model, you can change the configuration PRETRAIN_CHOICE
from 'imagenet' to 'self' and set the PRETRAIN_PATH
to your self-trained model. We offer Experiment-pretrain_choice-all_tricks-tri_center-market.sh
as an example.
If you want to know the detailed configurations and their meaning, please refer to config/defaults.py
. If you want to set your own parameters, you can follow our method: create a new yml file, then set your own parameters. Add --config_file='configs/your yml file'
int the commands described below, then our code will merge your configuration. automatically.
You can run these commands in .sh
files for training different datasets of differernt loss. You can also directly run code sh *.sh
to run our demo after your custom modification.
python3 tools/train.py --config_file='configs/softmax_triplet.yml' MODEL.DEVICE_ID "('your device id')" DATASETS.NAMES "('market1501')" OUTPUT_DIR "('your path to save checkpoints and logs')"
python3 tools/train.py --config_file='configs/softmax_triplet_with_center.yml' MODEL.DEVICE_ID "('your device id')" DATASETS.NAMES "('dukemtmc')" OUTPUT_DIR "('your path to save checkpoints and logs')"
You can test your model's performance directly by running these commands in .sh
files after your custom modification. You can also change the configuration to determine which feature of BNNeck is used and whether the feature is normalized (equivalent to use Cosine distance or Euclidean distance) for testing.
Please replace the data path of the model and set the PRETRAIN_CHOICE
as 'self' to avoid time consuming on loading ImageNet pretrained model.
python3 tools/test.py --config_file='configs/softmax_triplet_with_center.yml' MODEL.DEVICE_ID "('your device id')" DATASETS.NAMES "('market1501')" TEST.NECK_FEAT "('before')" TEST.FEAT_NORM "('no')" MODEL.PRETRAIN_CHOICE "('self')" TEST.WEIGHT "('your path to trained checkpoints')"
python3 tools/test.py --config_file='configs/softmax_triplet_with_center.yml' MODEL.DEVICE_ID "('your device id')" DATASETS.NAMES "('market1501')" TEST.NECK_FEAT "('after')" TEST.FEAT_NORM "('yes')" MODEL.PRETRAIN_CHOICE "('self')" TEST.WEIGHT "('your path to trained checkpoints')"
python3 tools/test.py --config_file='configs/softmax_triplet_with_center.yml' MODEL.DEVICE_ID "('your device id')" DATASETS.NAMES "('dukemtmc')" TEST.NECK_FEAT "('after')" TEST.FEAT_NORM "('yes')" MODEL.PRETRAIN_CHOICE "('self')" TEST.RE_RANKING "('yes')" TEST.WEIGHT "('your path to trained checkpoints')"