Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Insightface | 17,962 | 1 | 9 | 14 days ago | 28 | December 17, 2022 | 972 | mit | Python | |
State-of-the-art 2D and 3D Face Analysis Project | ||||||||||
Mvision | 5,784 | 2 years ago | 14 | C++ | ||||||
机器人视觉 移动机器人 VS-SLAM ORB-SLAM2 深度学习目标检测 yolov3 行为检测 opencv PCL 机器学习 无人驾驶 | ||||||||||
Deep Text Recognition Benchmark | 3,412 | a month ago | 217 | apache-2.0 | Jupyter Notebook | |||||
Text recognition (optical character recognition) with deep learning methods. | ||||||||||
Lstm Human Activity Recognition | 3,074 | a year ago | 19 | mit | Jupyter Notebook | |||||
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier | ||||||||||
Ccpd | 1,965 | 3 months ago | 84 | mit | Python | |||||
[ECCV 2018] CCPD: a diverse and well-annotated dataset for license plate detection and recognition | ||||||||||
Celebamask Hq | 1,456 | 2 years ago | 49 | Python | ||||||
A large-scale face dataset for face parsing, recognition, generation and editing. | ||||||||||
Entity Recognition Datasets | 1,365 | a month ago | 7 | mit | Python | |||||
A collection of corpora for named entity recognition (NER) and entity recognition tasks. These annotated datasets cover a variety of languages, domains and entity types. | ||||||||||
Esc 50 | 1,132 | 3 days ago | 1 | other | Python | |||||
ESC-50: Dataset for Environmental Sound Classification | ||||||||||
Real World Masked Face Dataset | 1,100 | 3 years ago | 32 | Python | ||||||
Real-World Masked Face Dataset,口罩人脸数据集 | ||||||||||
Bert Ner | 1,000 | 3 years ago | 71 | mit | Python | |||||
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset). |
Use Google's BERT for named entity recognition (CoNLL-2003 as the dataset).
The original version (see old_version for more detail) contains some hard codes and lacks corresponding annotations,which is inconvenient to understand. So in this updated version,there are some new ideas and tricks (On data Preprocessing and layer design) that can help you quickly implement the fine-tuning model (you just need to try to modify crf_layer or softmax_layer).
BERT-NER
|____ bert # need git from [here](https://github.com/google-research/bert)
|____ cased_L-12_H-768_A-12 # need download from [here](https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip)
|____ data # train data
|____ middle_data # middle data (label id map)
|____ output # output (final model, predict results)
|____ BERT_NER.py # mian code
|____ conlleval.pl # eval code
|____ run_ner.sh # run model and eval result
bash run_ner.sh
python BERT_NER.py\
--task_name="NER" \
--do_lower_case=False \
--crf=False \
--do_train=True \
--do_eval=True \
--do_predict=True \
--data_dir=data \
--vocab_file=cased_L-12_H-768_A-12/vocab.txt \
--bert_config_file=cased_L-12_H-768_A-12/bert_config.json \
--init_checkpoint=cased_L-12_H-768_A-12/bert_model.ckpt \
--max_seq_length=128 \
--train_batch_size=32 \
--learning_rate=2e-5 \
--num_train_epochs=3.0 \
--output_dir=./output/result_dir
perl conlleval.pl -d '\t' < ./output/result_dir/label_test.txt
Notice: cased model was recommened, according to this paper. CoNLL-2003 dataset and perl Script comes from here
accuracy: 98.15%; precision: 90.61%; recall: 88.85%; FB1: 89.72
LOC: precision: 91.93%; recall: 91.79%; FB1: 91.86 1387
MISC: precision: 83.83%; recall: 78.43%; FB1: 81.04 668
ORG: precision: 87.83%; recall: 85.18%; FB1: 86.48 1191
PER: precision: 95.19%; recall: 94.83%; FB1: 95.01 1311
Here i just use the default paramaters, but as Google's paper says a 0.2% error is reasonable(reported 92.4%). Maybe some tricks need to be added to the above model.