Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Labelme | 9,896 | 8 | 8 | 11 days ago | 177 | March 03, 2022 | 67 | other | Python | |
Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation). | ||||||||||
Awesome Semantic Segmentation | 8,065 | 2 years ago | 13 | |||||||
:metal: awesome-semantic-segmentation | ||||||||||
Segmentation_models.pytorch | 6,981 | 2 | 34 | 14 hours ago | 10 | November 18, 2021 | 26 | mit | Python | |
Segmentation models with pretrained backbones. PyTorch. | ||||||||||
Paddleseg | 6,652 | 2 | 16 hours ago | 8 | April 20, 2022 | 184 | apache-2.0 | Python | ||
Easy-to-use image segmentation library with awesome pre-trained model zoo, supporting wide-range of practical tasks in Semantic Segmentation, Interactive Segmentation, Panoptic Segmentation, Image Matting, 3D Segmentation, etc. | ||||||||||
Pytorch Unet | 6,465 | 19 days ago | 49 | gpl-3.0 | Python | |||||
PyTorch implementation of the U-Net for image semantic segmentation with high quality images | ||||||||||
Mmsegmentation | 5,458 | 2 | 20 hours ago | 30 | July 01, 2022 | 292 | apache-2.0 | Python | ||
OpenMMLab Semantic Segmentation Toolbox and Benchmark. | ||||||||||
Gluon Cv | 5,422 | 15 | 44 | 2 months ago | 1,514 | July 07, 2022 | 61 | apache-2.0 | Python | |
Gluon CV Toolkit | ||||||||||
Hrnet Semantic Segmentation | 2,714 | 4 months ago | 151 | other | Python | |||||
The OCR approach is rephrased as Segmentation Transformer: https://arxiv.org/abs/1909.11065. This is an official implementation of semantic segmentation for HRNet. https://arxiv.org/abs/1908.07919 | ||||||||||
Awesome Semantic Segmentation Pytorch | 2,399 | 3 months ago | 114 | apache-2.0 | Python | |||||
Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet) | ||||||||||
Imgclsmob | 2,399 | 4 | a year ago | 67 | September 21, 2021 | 6 | mit | Python | ||
Sandbox for training deep learning networks |
This repo is the pytorch implementation of the following paper:
Adversarial Learning for Semi-supervised Semantic Segmentation
Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu Lin, and Ming-Hsuan Yang
Proceedings of the British Machine Vision Conference (BMVC), 2018.
Contact: Wei-Chih Hung (whung8 at ucmerced dot edu)
The code are heavily borrowed from a pytorch DeepLab implementation (Link). The baseline model is DeepLabv2-Resnet101 without multiscale training and CRF post processing, which yields meanIOU 73.6%
on the VOC2012 validation set.
Please cite our paper if you find it useful for your research.
@inproceedings{Hung_semiseg_2018,
author = {W.-C. Hung and Y.-H. Tsai and Y.-T. Liou and Y.-Y. Lin and M.-H. Yang},
booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
title = {Adversarial Learning for Semi-supervised Semantic Segmentation},
year = {2018}
}
git clone https://github.com/hfslyc/AdvSemiSeg.git
AdvSemiSeg/dataset/VOC2012
. For training, you will need the augmented labels (Download). The folder structure should be like:AdvSemiSeg/dataset/VOC2012/JPEGImages
/SegmentationClassAug
python evaluate_voc.py --pretrained-model semi0.125 --save-dir results
It will download the pretrained model with 1/8 training data and evaluate on the VOC2012 val set. The colorized images will be saved in results/
and the detailed class IOU will be saved in results/result.txt
. The mean IOU should be around 68.8%
.
--pretrained-model
options: semi0.125
, semi0.25
, semi0.5
, advFull
.python train.py --snapshot-dir snapshots \
--partial-data 0.125 \
--num-steps 20000 \
--lambda-adv-pred 0.01 \
--lambda-semi 0.1 --semi-start 5000 --mask-T 0.2
The parameters correspond to those in Table 5 of the paper.
To evaluate trained model, execute the following:
python evaluate_voc.py --restore-from snapshots/VOC_20000.pth \
--save-dir results