Grpc Java

The Java gRPC implementation. HTTP/2 based RPC
Alternatives To Grpc Java
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Grpc Go18,89711,22331,2687 hours ago731July 26, 2023134apache-2.0Go
The Go language implementation of gRPC. HTTP/2 based RPC
Grpc Java10,8131,2791,28221 hours ago145July 27, 2023488apache-2.0Java
The Java gRPC implementation. HTTP/2 based RPC
Drpc1,32658a month ago59April 20, 202310mitGo
drpc is a lightweight, drop-in replacement for gRPC
Gruf5671314a month ago43July 08, 20228mitRuby
gRPC Ruby Framework
Yarpc Go3903244a month ago164February 03, 202224mitGo
A message passing platform for Go
Raft Grpc Example152
a month agounlicenseGo
Example code for how to get hashicorp/raft running with gRPC
Grpchan149182 years ago17February 23, 20222mitGo
Channels for gRPC: custom transports
Grpc Dotnet Namedpipes145618 days ago14November 11, 20229apache-2.0C#
Named pipe transport for gRPC in C#/.NET
Gk124
6 years agoMay 29, 20215apache-2.0Go
Go-Kit Genetator
Awesome Swift Nio62
3 years ago
📖 A collaborative list of all things Swift NIO
Alternatives To Grpc Java
Select To Compare


Alternative Project Comparisons
Readme

gRPC-Java - An RPC library and framework

Homepage: grpc.io
Mailing List: [email protected]

Join the chat at https://gitter.im/grpc/grpc Build Status Line Coverage Status Branch-adjusted Line Coverage Status

Supported Platforms

gRPC-Java supports Java 8 and later. Android minSdkVersion 21 (Lollipop) and later are supported with Java 8 language desugaring.

TLS usage on Android typically requires Play Services Dynamic Security Provider. Please see the Security Readme.

Older Java versions are not directly supported, but a branch remains available for fixes and releases. See gRFC P5 JDK Version Support Policy.

Java version gRPC Branch
7 1.41.x

Getting Started

For a guided tour, take a look at the quick start guide or the more explanatory gRPC basics.

The examples and the Android example are standalone projects that showcase the usage of gRPC.

Download

Download the JARs. Or for Maven with non-Android, add to your pom.xml:

<dependency>
  <groupId>io.grpc</groupId>
  <artifactId>grpc-netty-shaded</artifactId>
  <version>1.58.0</version>
  <scope>runtime</scope>
</dependency>
<dependency>
  <groupId>io.grpc</groupId>
  <artifactId>grpc-protobuf</artifactId>
  <version>1.58.0</version>
</dependency>
<dependency>
  <groupId>io.grpc</groupId>
  <artifactId>grpc-stub</artifactId>
  <version>1.58.0</version>
</dependency>
<dependency> <!-- necessary for Java 9+ -->
  <groupId>org.apache.tomcat</groupId>
  <artifactId>annotations-api</artifactId>
  <version>6.0.53</version>
  <scope>provided</scope>
</dependency>

Or for Gradle with non-Android, add to your dependencies:

runtimeOnly 'io.grpc:grpc-netty-shaded:1.58.0'
implementation 'io.grpc:grpc-protobuf:1.58.0'
implementation 'io.grpc:grpc-stub:1.58.0'
compileOnly 'org.apache.tomcat:annotations-api:6.0.53' // necessary for Java 9+

For Android client, use grpc-okhttp instead of grpc-netty-shaded and grpc-protobuf-lite instead of grpc-protobuf:

implementation 'io.grpc:grpc-okhttp:1.58.0'
implementation 'io.grpc:grpc-protobuf-lite:1.58.0'
implementation 'io.grpc:grpc-stub:1.58.0'
compileOnly 'org.apache.tomcat:annotations-api:6.0.53' // necessary for Java 9+

For Bazel, you can either use Maven (with the GAVs from above), or use @io_grpc_grpc_java//api et al (see below).

Development snapshots are available in Sonatypes's snapshot repository.

Generated Code

For protobuf-based codegen, you can put your proto files in the src/main/proto and src/test/proto directories along with an appropriate plugin.

For protobuf-based codegen integrated with the Maven build system, you can use protobuf-maven-plugin (Eclipse and NetBeans users should also look at os-maven-plugin's IDE documentation):

<build>
  <extensions>
    <extension>
      <groupId>kr.motd.maven</groupId>
      <artifactId>os-maven-plugin</artifactId>
      <version>1.7.1</version>
    </extension>
  </extensions>
  <plugins>
    <plugin>
      <groupId>org.xolstice.maven.plugins</groupId>
      <artifactId>protobuf-maven-plugin</artifactId>
      <version>0.6.1</version>
      <configuration>
        <protocArtifact>com.google.protobuf:protoc:3.24.0:exe:${os.detected.classifier}</protocArtifact>
        <pluginId>grpc-java</pluginId>
        <pluginArtifact>io.grpc:protoc-gen-grpc-java:1.58.0:exe:${os.detected.classifier}</pluginArtifact>
      </configuration>
      <executions>
        <execution>
          <goals>
            <goal>compile</goal>
            <goal>compile-custom</goal>
          </goals>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>

For non-Android protobuf-based codegen integrated with the Gradle build system, you can use protobuf-gradle-plugin:

plugins {
    id 'com.google.protobuf' version '0.9.4'
}

protobuf {
  protoc {
    artifact = "com.google.protobuf:protoc:3.22.3"
  }
  plugins {
    grpc {
      artifact = 'io.grpc:protoc-gen-grpc-java:1.58.0'
    }
  }
  generateProtoTasks {
    all()*.plugins {
      grpc {}
    }
  }
}

The prebuilt protoc-gen-grpc-java binary uses glibc on Linux. If you are compiling on Alpine Linux, you may want to use the Alpine grpc-java package which uses musl instead.

For Android protobuf-based codegen integrated with the Gradle build system, also use protobuf-gradle-plugin but specify the 'lite' options:

plugins {
    id 'com.google.protobuf' version '0.9.4'
}

protobuf {
  protoc {
    artifact = "com.google.protobuf:protoc:3.22.3"
  }
  plugins {
    grpc {
      artifact = 'io.grpc:protoc-gen-grpc-java:1.58.0'
    }
  }
  generateProtoTasks {
    all().each { task ->
      task.builtins {
        java { option 'lite' }
      }
      task.plugins {
        grpc { option 'lite' }
      }
    }
  }
}

For Bazel, use the proto_library and the java_proto_library (no load() required) and load("@io_grpc_grpc_java//:java_grpc_library.bzl", "java_grpc_library") (from this project), as in this example BUILD.bazel.

API Stability

APIs annotated with @Internal are for internal use by the gRPC library and should not be used by gRPC users. APIs annotated with @ExperimentalApi are subject to change in future releases, and library code that other projects may depend on should not use these APIs.

We recommend using the grpc-java-api-checker (an Error Prone plugin) to check for usages of @ExperimentalApi and @Internal in any library code that depends on gRPC. It may also be used to check for @Internal usage or unintended @ExperimentalApi consumption in non-library code.

How to Build

If you are making changes to gRPC-Java, see the compiling instructions.

High-level Components

At a high level there are three distinct layers to the library: Stub, Channel, and Transport.

Stub

The Stub layer is what is exposed to most developers and provides type-safe bindings to whatever datamodel/IDL/interface you are adapting. gRPC comes with a plugin to the protocol-buffers compiler that generates Stub interfaces out of .proto files, but bindings to other datamodel/IDL are easy and encouraged.

Channel

The Channel layer is an abstraction over Transport handling that is suitable for interception/decoration and exposes more behavior to the application than the Stub layer. It is intended to be easy for application frameworks to use this layer to address cross-cutting concerns such as logging, monitoring, auth, etc.

Transport

The Transport layer does the heavy lifting of putting and taking bytes off the wire. The interfaces to it are abstract just enough to allow plugging in of different implementations. Note the transport layer API is considered internal to gRPC and has weaker API guarantees than the core API under package io.grpc.

gRPC comes with multiple Transport implementations:

  1. The Netty-based HTTP/2 transport is the main transport implementation based on Netty. It is not officially supported on Android.
  2. The OkHttp-based HTTP/2 transport is a lightweight transport based on Okio and forked low-level parts of OkHttp. It is mainly for use on Android.
  3. The in-process transport is for when a server is in the same process as the client. It is used frequently for testing, while also being safe for production use.
  4. The Binder transport is for Android cross-process communication on a single device.
Popular Grpc Projects
Popular Transport Projects
Popular Application Programming Interfaces Categories

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Java
Grpc
Transport
Protocol Buffers
Stub
Codegen
Grpc Java