Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Pytorch Handbook | 17,988 | 7 days ago | 50 | Jupyter Notebook | ||||||
pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行 | ||||||||||
Easyocr | 17,436 | 37 | 15 hours ago | 30 | June 02, 2022 | 195 | apache-2.0 | Python | ||
Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. | ||||||||||
Screenshot To Code | 13,951 | 10 months ago | 17 | other | HTML | |||||
A neural network that transforms a design mock-up into a static website. | ||||||||||
Fashion Mnist | 9,856 | a year ago | 24 | mit | Python | |||||
A MNIST-like fashion product database. Benchmark :point_down: | ||||||||||
Computervision Recipes | 8,817 | 2 months ago | 65 | mit | Jupyter Notebook | |||||
Best Practices, code samples, and documentation for Computer Vision. | ||||||||||
Deeplearning | 7,463 | a year ago | 8 | apache-2.0 | Jupyter Notebook | |||||
深度学习入门教程, 优秀文章, Deep Learning Tutorial | ||||||||||
Leedl Tutorial | 7,392 | a month ago | 3 | other | Jupyter Notebook | |||||
《李宏毅深度学习教程》,PDF下载地址:https://github.com/datawhalechina/leedl-tutorial/releases | ||||||||||
Pytorch Tutorial | 7,372 | 7 days ago | 28 | mit | Jupyter Notebook | |||||
Build your neural network easy and fast, 莫烦Python中文教学 | ||||||||||
Cnn Explainer | 6,389 | a month ago | mit | JavaScript | ||||||
Learning Convolutional Neural Networks with Interactive Visualization. | ||||||||||
Techniques | 6,100 | 3 days ago | 1 | apache-2.0 | ||||||
Techniques for deep learning with satellite & aerial imagery |
A tool to visualize convolutional, ReLU, and pooling layer activations on an input image. This is a PyTorch implementation of htoyryla's convis.
After installing the dependencies, you'll need to run the following script to download the default VGG and NIN models:
python models/download_models.py
You can also place convis.py
or convis_heatmap.py
in your neural-style-pt directory, in order to more easily work with models and input images.
convis.py
will create an output image for every channel in the specified layer:
python convis.py -input_image examples/inputs/tubingen.jpg -model_file models/vgg19-d01eb7cb.pth -layer conv2_2 -output_dir output
convis_heatmap.py
will create a single output image composed of every channel in the specified layer:
python convis_heatmap.py -input_image examples/inputs/tubingen.jpg -model_file models/vgg19-d01eb7cb.pth -layer relu4_2
-input_image
: Path to the input image.-image_size
: Maximum side length (in pixels) of the generated image. Default is 512.-layer
: The target layer. Default is relu4_2
-pooling
: The type of pooling layers to use; one of max
or avg
. Default is max
.-model_file
: Path to the .pth
file for the VGG or NIN model.-output_image
: Name of the output image. Default is out.png
.-output_dir
: Name of the output image directory. Default is output
.The output files will be named like output/tubingen-conv3_2-69.png