Scs4onnx

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible.
Alternatives To Scs4onnx
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Scs4onnx4317 months ago19May 25, 2022mitPython
A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible.
Onnx2json18
2 months agomitPython
Exports the ONNX file to a JSON file and JSON dict.
Mlflow Redisai18
2 years ago4apache-2.0Python
RedisAI integration for MLFlow
Json2onnx13
7 months agomitPython
Converts a JSON file to an ONNX file.
Scc4onnx1317 months ago5May 25, 2022mitPython
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.
Sne4onnx11
3 months agomitPython
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.
Snc4onnx8
a month agomitPython
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.
Onnx Opcounter8
2 years agon,ullapache-2.0Python
Count number of parameters / MACs / FLOPS for ONNX models.
Sio4onnx7
7 months agomitPython
Simple tool to change the INPUT and OUTPUT shape of ONNX.
Snd4onnx6
7 months agomitPython
Simple node deletion tool for onnx.
Alternatives To Scs4onnx
Select To Compare


Alternative Project Comparisons
Readme

scs4onnx

A very simple tool that compresses the overall size of the ONNX model by aggregating duplicate constant values as much as possible. Simple Constant value Shrink for ONNX.

PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • [x] If the same constant tensor is found by scanning the entire graph for Constant values, it is aggregated into a single constant tensor.
  • [x] Ignore scalar values.
  • [x] Ignore variables.
  • [ ] Finally, create a Fork of onnx-simplifier and merge this process just before the onnx file output process -> Temporarily abandoned because it turned out that the onnx-simplifier specification needed to be changed in a major way.
  • [x] Implementation of a specification for separating the weight of a specified OP name to an external file.
  • [x] Implementation of a specification for separating the weight of a specified Constant name to an external file.
  • [x] Added option to downcast from Float64 to Float32 and INT64 to INT32 to attempt size compression.
  • [x] Post an issue of onnx-simplifier. Excessive bloating of ONNX files due to over-efficient conversion of "Tile" to constants (Protocol Buffers .onnx > 2GB) #178
  • [x] Add sample onnx models.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U scs4onnx

1-2. Docker

PINTO0309/simple-onnx-processing-tools

2. CLI Usage

$ scs4onnx -h

usage:
  scs4onnx [-h]
  [-m {shrink,npy}]
  [-fo FORCED_EXTRACTION_OP_NAMES]
  [-fc FORCED_EXTRACTION_CONSTANT_NAMES]
  [-d]
  [-n]
  input_onnx_file_path output_onnx_file_path


positional arguments:
  input_onnx_file_path
    Input onnx file path.

  output_onnx_file_path
    Output onnx file path.

optional arguments:
  -h, --help
    show this help message and exit

  -m {shrink,npy}, --mode {shrink,npy}
    Constant Value Compression Mode.
    shrink: Share constant values inside the model as much as possible.
            The model size is slightly larger because
            some shared constant values remain inside the model,
            but performance is maximized.
    npy:    Outputs constant values used repeatedly in the model to an
            external file .npy. Instead of the smallest model body size,
            the file loading overhead is greater.
    Default: shrink

  -fo FORCED_EXTRACTION_OP_NAMES [FORCED_EXTRACTION_OP_NAMES ...], --forced_extraction_op_names FORCED_EXTRACTION_OP_NAMES [FORCED_EXTRACTION_OP_NAMES ...]
    Extracts the constant value of the specified OP name to .npy
    regardless of the mode specified.
    Cannot be used with --forced_extraction_constant_names at the same time.
    e.g. --forced_extraction_op_names aaa bbb ccc

  -fc FORCED_EXTRACTION_CONSTANT_NAMES [FORCED_EXTRACTION_CONSTANT_NAMES ...], --forced_extraction_constant_names FORCED_EXTRACTION_CONSTANT_NAMES [FORCED_EXTRACTION_CONSTANT_NAMES ...]
    Extracts the constant value of the specified Constant name to .npy
    regardless of the mode specified.
    Cannot be used with --forced_extraction_op_names at the same time.
    e.g. --forced_extraction_constant_names aaa bbb ccc

  -d, --disable_auto_downcast
    Disables automatic downcast processing from Float64 to Float32 and INT64
    to INT32. Try enabling it and re-running it if you encounter type-related
    errors.

  -n, --non_verbose
    Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from scs4onnx import shrinking
>>> help(shrinking)

Help on function shrinking in module scs4onnx.onnx_shrink_constant:

shrinking(
  input_onnx_file_path: Union[str, NoneType] = '',
  output_onnx_file_path: Union[str, NoneType] = '',
  onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
  mode: Union[str, NoneType] = 'shrink',
  forced_extraction_op_names: List[str] = [],
  forced_extraction_constant_names: List[str] = [],
  disable_auto_downcast: Union[bool, NoneType] = False
  non_verbose: Union[bool, NoneType] = False
) -> Tuple[onnx.onnx_ml_pb2.ModelProto, str]

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    mode: Optional[str]
        Constant Value Compression Mode.
        'shrink': Share constant values inside the model as much as possible.
            The model size is slightly larger because some shared constant values remain
            inside the model, but performance is maximized.
        'npy': Outputs constant values used repeatedly in the model to an external file .npy.
            Instead of the smallest model body size, the file loading overhead is greater.
        Default: shrink

    forced_extraction_op_names: List[str]
        Extracts the constant value of the specified OP name to .npy
        regardless of the mode specified.
        Cannot be used with --forced_extraction_constant_names at the same time.
        e.g. ['aaa','bbb','ccc']

    forced_extraction_constant_names: List[str]
        Extracts the constant value of the specified Constant name to .npy
        regardless of the mode specified.
        Cannot be used with --forced_extraction_op_names at the same time.
        e.g. ['aaa','bbb','ccc']

    disable_auto_downcast: Optional[bool]
        Disables automatic downcast processing from Float64 to Float32 and INT64 to INT32.
        Try enabling it and re-running it if you encounter type-related errors.
        Default: False

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    shrunken_graph: onnx.ModelProto
        Shrunken onnx ModelProto

    npy_file_paths: List[str]
        List of paths to externally output .npy files.
        An empty list is always returned when in 'shrink' mode.

3. CLI Execution

$ scs4onnx input.onnx output.onnx --mode shrink

image

4. In-script Execution

4-1. When an onnx file is used as input

If output_onnx_file_path is not specified, no .onnx file is output.

from scs4onnx import shrinking

shrunk_graph, npy_file_paths = shrinking(
  input_onnx_file_path='input.onnx',
  output_onnx_file_path='output.onnx',
  mode='npy',
  non_verbose=False
)

image

4-2. When entering the onnx.ModelProto

onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

from scs4onnx import shrinking

shrunk_graph, npy_file_paths = shrinking(
  onnx_graph=graph,
  mode='npy',
  non_verbose=True
)

5. Sample

5-1. shrink mode sample

  • 297.8MB -> 67.4MB (.onnx)

    $ scs4onnx gmflow_sintel_480x640.onnx gmflow_sintel_480x640_opt.onnx
    

    image image

  • 1.8GB -> 886.8MB (.onnx)

    $ scs4onnx hitnet_sf_finalpass_720x960.onnx hitnet_sf_finalpass_720x960_opt.onnx
    

    image

  • 1.8GB -> 2.1MB (.onnx) + 884.7MB (.npy)

    $ scs4onnx \
    hitnet_sf_finalpass_720x960.onnx \
    hitnet_sf_finalpass_720x960_opt.onnx \
    --forced_extraction_op_names GatherElements_660
    

    image image image

  • 297.8MB -> 21.3MB (.onnx) + 46.1MB (.npy)

    $ scs4onnx \
    gmflow_sintel_480x640.onnx \
    gmflow_sintel_480x640_opt.onnx \
    --forced_extraction_constant_names 1646
    

    image image image

5-2. npy mode sample

  • 297.8MB -> 21.3MB (.onnx)

    image image

5-3. .npy file view

$ python
>>> import numpy as np
>>> param = np.load('gmflow_sintel_480x640_shrunken_exported_1646.npy')
>>> param.shape
(8, 1200, 1200)
>>> param
array([[[   0.,    0.,    0., ...,    0.,    0.,    0.],
        [   0.,    0.,    0., ...,    0.,    0.,    0.],
        [   0.,    0.,    0., ...,    0.,    0.,    0.],
        ...,
        [-100., -100., -100., ...,    0.,    0.,    0.],
        [-100., -100., -100., ...,    0.,    0.,    0.],
        [-100., -100., -100., ...,    0.,    0.,    0.]]], dtype=float32)

6. Sample ONNX models

  1. gmflow_sintel_480x640.onnx - Optical flow calculation - LICENSE Apache License 2.0
  2. hitnet_sf_finalpass_720x960.onnx - Stereo depth estimation - LICENSE Apache License 2.0

7. Reference

  1. https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon/docs/index.html
  2. https://github.com/NVIDIA/TensorRT/tree/main/tools/onnx-graphsurgeon
  3. PINTO0309/sne4onnx
  4. PINTO0309/snd4onnx
  5. PINTO0309/snc4onnx
  6. PINTO0309/sog4onnx
  7. PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Popular Onnx Projects
Popular Command Line Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Command Line
Onnx