Entsoe Py

Python client for the ENTSO-E API (european network of transmission system operators for electricity)
Alternatives To Entsoe Py
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Nba_py971
84 years ago3December 01, 201649bsd-3-clausePython
Python client for NBA statistics located at stats.nba.com
Eland57437 days ago30November 22, 202386apache-2.0Python
Python Client and Toolkit for DataFrames, Big Data, Machine Learning and ETL in Elasticsearch
Entsoe Py33221315 days ago57November 21, 202325mitPython
Python client for the ENTSO-E API (european network of transmission system operators for electricity)
Smappy20
595 years ago25July 20, 20185mitPython
Python client for Smappee
Python Opentsdb8
5 years agoPython
OpenTSDB python client with pandas support.
Idigbio Python Client8
23 years ago20March 16, 20182mitPython
A python client for the idigbio v2 API
Clicksql6
2 years ago14mitPython
a python client for ClickHouse
Altadata Python3
3 years agomitPython
ALTADATA Python client provides convenient access to the ALTADATA API from applications written in the Python language.
Eoddata Client3
6 years agounlicensePython
Python client to get historical data from eoddata web service.
Eurostat Api Client3
10 months ago3apache-2.0Python
A simple python client to query eurostat API
Alternatives To Entsoe Py
Select To Compare


Alternative Project Comparisons
Readme

entsoe-py

Python client for the ENTSO-E API (european network of transmission system operators for electricity)

Documentation of the API found on https://transparency.entsoe.eu/content/static_content/Static%20content/web%20api/Guide.html

Installation

python3 -m pip install entsoe-py

Usage

The package comes with 2 clients:

  • EntsoeRawClient: Returns data in its raw format, usually XML or a ZIP-file containing XML's
  • EntsoePandasClient: Returns data parsed as a Pandas Series or DataFrame

EntsoeRawClient

from entsoe import EntsoeRawClient
import pandas as pd

client = EntsoeRawClient(api_key=<YOUR API KEY>)

start = pd.Timestamp('20171201', tz='Europe/Brussels')
end = pd.Timestamp('20180101', tz='Europe/Brussels')
country_code = 'BE'  # Belgium
country_code_from = 'FR'  # France
country_code_to = 'DE_LU' # Germany-Luxembourg
type_marketagreement_type = 'A01'
contract_marketagreement_type = 'A01'
process_type = 'A51'

# methods that return XML
client.query_day_ahead_prices(country_code, start, end)
client.query_net_position(country_code, start, end, dayahead=True)
client.query_load(country_code, start, end)
client.query_load_forecast(country_code, start, end)
client.query_wind_and_solar_forecast(country_code, start, end, psr_type=None)
client.query_intraday_wind_and_solar_forecast(country_code, start, end, psr_type=None)
client.query_generation_forecast(country_code, start, end)
client.query_generation(country_code, start, end, psr_type=None)
client.query_generation_per_plant(country_code, start, end, psr_type=None)
client.query_installed_generation_capacity(country_code, start, end, psr_type=None)
client.query_installed_generation_capacity_per_unit(country_code, start, end, psr_type=None)
client.query_crossborder_flows(country_code_from, country_code_to, start, end)
client.query_scheduled_exchanges(country_code_from, country_code_to, start, end, dayahead=False)
client.query_net_transfer_capacity_dayahead(country_code_from, country_code_to, start, end)
client.query_net_transfer_capacity_weekahead(country_code_from, country_code_to, start, end)
client.query_net_transfer_capacity_monthahead(country_code_from, country_code_to, start, end)
client.query_net_transfer_capacity_yearahead(country_code_from, country_code_to, start, end)
client.query_intraday_offered_capacity(country_code_from, country_code_to, start, end, implicit=True)
client.query_offered_capacity(country_code_from, country_code_to, start, end, contract_marketagreement_type, implicit=True)
client.query_contracted_reserve_prices(country_code, start, end, type_marketagreement_type, psr_type=None)
client.query_contracted_reserve_amount(country_code, start, end, type_marketagreement_type, psr_type=None)
client.query_procured_balancing_capacity(country_code, start, end, process_type, type_marketagreement_type=None)
client.query_aggregate_water_reservoirs_and_hydro_storage(country_code, start, end)

# methods that return ZIP (bytes)
client.query_imbalance_prices(country_code, start, end, psr_type=None)
client.query_unavailability_of_generation_units(country_code, start, end, docstatus=None, periodstartupdate=None, periodendupdate=None)
client.query_unavailability_of_production_units(country_code, start, end, docstatus=None, periodstartupdate=None, periodendupdate=None)
client.query_unavailability_transmission(country_code_from, country_code_to, start, end, docstatus=None, periodstartupdate=None, periodendupdate=None)
client.query_withdrawn_unavailability_of_generation_units(country_code, start, end)

Dump result to file

xml_string = client.query_day_ahead_prices(country_code, start, end)
with open('outfile.xml', 'w') as f:
    f.write(xml_string)

zip_bytes = client.query_unavailability_of_generation_units(country_code, start, end)
with open('outfile.zip', 'wb') as f:
    f.write(zip_bytes)

Making another request

Is the API-call you want not in the list, you can lookup the parameters yourself in the API documentation

params = {
    'documentType': 'A44',
    'in_Domain': '10YBE----------2',
    'out_Domain': '10YBE----------2'
}
response = client._base_request(params=params, start=start, end=end)
print(response.text)

EntsoePandasClient

The Pandas Client works similar to the Raw Client, with extras:

  • Time periods that span more than 1 year are automatically dealt with
  • Requests of large numbers of files are split over multiple API calls

Please note that this client requires you to specifically set a start= and end= parameter which should be a pandas timestamp with timezone. If not it will throw an exception

from entsoe import EntsoePandasClient
import pandas as pd

client = EntsoePandasClient(api_key=<YOUR API KEY>)

start = pd.Timestamp('20171201', tz='Europe/Brussels')
end = pd.Timestamp('20180101', tz='Europe/Brussels')
country_code = 'BE'  # Belgium
country_code_from = 'FR'  # France
country_code_to = 'DE_LU' # Germany-Luxembourg
type_marketagreement_type = 'A01'
contract_marketagreement_type = "A01"
process_type = 'A51'

# methods that return Pandas Series
client.query_day_ahead_prices(country_code, start=start, end=end)
client.query_net_position(country_code, start=start, end=end, dayahead=True)
client.query_crossborder_flows(country_code_from, country_code_to, start=start, end=end)
client.query_scheduled_exchanges(country_code_from, country_code_to, start=start, end=end, dayahead=False)
client.query_net_transfer_capacity_dayahead(country_code_from, country_code_to, start=start, end=end)
client.query_net_transfer_capacity_weekahead(country_code_from, country_code_to, start=start, end=end)
client.query_net_transfer_capacity_monthahead(country_code_from, country_code_to, start=start, end=end)
client.query_net_transfer_capacity_yearahead(country_code_from, country_code_to, start=start, end=end)
client.query_intraday_offered_capacity(country_code_from, country_code_to, start=start, end=end, implicit=True)
client.query_offered_capacity(country_code_from, country_code_to, contract_marketagreement_type, start=start, end=end, implicit=True)
client.query_aggregate_water_reservoirs_and_hydro_storage(country_code, start=start, end=end)

# methods that return Pandas DataFrames
client.query_load(country_code, start=start, end=end)
client.query_load_forecast(country_code, start=start, end=end)
client.query_load_and_forecast(country_code, start=start, end=end)
client.query_generation_forecast(country_code, start=start, end=end)
client.query_wind_and_solar_forecast(country_code, start=start, end=end, psr_type=None)
client.query_intraday_wind_and_solar_forecast(country_code, start=start, end=end, psr_type=None)
client.query_generation(country_code, start=start, end=end, psr_type=None)
client.query_generation_per_plant(country_code, start=start, end=end, psr_type=None, include_eic=False)
client.query_installed_generation_capacity(country_code, start=start, end=end, psr_type=None)
client.query_installed_generation_capacity_per_unit(country_code, start=start, end=end, psr_type=None)
client.query_imbalance_prices(country_code, start=start, end=end, psr_type=None)
client.query_contracted_reserve_prices(country_code, type_marketagreement_type, start=start, end=end, psr_type=None)
client.query_contracted_reserve_amount(country_code, type_marketagreement_type, start=start, end=end, psr_type=None)
client.query_unavailability_of_generation_units(country_code, start=start, end=end, docstatus=None, periodstartupdate=None, periodendupdate=None)
client.query_unavailability_of_production_units(country_code, start, end, docstatus=None, periodstartupdate=None, periodendupdate=None)
client.query_unavailability_transmission(country_code_from, country_code_to, start=start, end=end, docstatus=None, periodstartupdate=None, periodendupdate=None)
client.query_withdrawn_unavailability_of_generation_units(country_code, start, end)
client.query_physical_crossborder_allborders(country_code, start, end, export=True)
client.query_generation_import(country_code, start, end)
client.query_procured_balancing_capacity(country_code, process_type, start=start, end=end, type_marketagreement_type=None)

Dump result to file

See a list of all IO-methods on https://pandas.pydata.org/pandas-docs/stable/io.html

ts = client.query_day_ahead_prices(country_code, start=start, end=end)
ts.to_csv('outfile.csv')

Mappings

These lists are always evolving, so let us know if something's inaccurate!

All mappings can be found in mappings.py here

For bidding zone that have changed (splitted/merged) some codes are only valid for certain times. The below table shows these cases.

2015 2016 2017 2018 2019 2020 2021
DE_AT_LU yes yes yes yes No Value No Value No Value
DE No Value No Value No Value No Value No Value No Value No Value
DE_LU No Value No Value No Value yes yes yes yes
AT No Value No Value No Value yes yes yes yes
Popular Python Client Projects
Popular Pandas Projects
Popular Application Programming Interfaces Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Pandas
Python Client