Wayeb

Wayeb is a Complex Event Processing and Forecasting (CEP/F) engine written in Scala.
Alternatives To Wayeb
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Awesome Project Ideas6,856
6 months ago1mit
Curated list of Machine Learning, NLP, Vision, Recommender Systems Project Ideas
Time Series Forecasting With Python499
4 months ago7Jupyter Notebook
A use-case focused tutorial for time series forecasting with python
Trajectron Plus Plus484
6 months ago7mitJupyter Notebook
Code accompanying the ECCV 2020 paper "Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heterogeneous Data" by Tim Salzmann*, Boris Ivanovic*, Punarjay Chakravarty, and Marco Pavone (* denotes equal contribution).
Etdataset290
2 years agoother
The Electricity Transformer dataset is collected to support the further investigation on the long sequence forecasting problem.
Wayeb139
2 years agootherScala
Wayeb is a Complex Event Processing and Forecasting (CEP/F) engine written in Scala.
Awesome Time Series Analysis99
3 years ago
This list collects learning resource, tools and dataset for time series analysis/time series data mining.
Deep Quant98
4 years ago1mitPython
Deep learning for forecasting company fundamental data
Keras Lstm Trajectory Prediction81
a year ago1Python
A Keras multi-input multi-output LSTM-based RNN for object trajectory forecasting
Tsforecasting79
a year agootherR
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.
Forecastml76
3 years ago5May 07, 20207otherR
An R package with Python support for multi-step-ahead forecasting with machine learning and deep learning algorithms
Alternatives To Wayeb
Select To Compare


Alternative Project Comparisons
Readme

Wayeb

Wayeb is a Complex Event Processing and Forecasting (CEP/F) engine written in Scala. It is based on symbolic automata and Markov models.

Quick start

Building

Assuming $WAYEB_HOME is the root directory of Wayeb, then go inside:

$ cd $WAYEB_HOME

Let's build a fat jar:

$ sbt assembly

Recognition

In $WAYEB_HOME/data/demo/data.csv you may find a very simple dataset, consisting of 100 events. The event type is either A, B or C. In $WAYEB_HOME/patterns/demo/a_seq_b_or_c.sre you may find a simple complex event definition for the above dataset. It detects an event of type A followed by another event of type B or C. If we want to run this pattern over the stream, we must first compile this pattern into an automaton (make sure you have created a results folder under $WAYEB_HOME):

$ java -jar cef/target/scala-2.12/wayeb-0.2.0-SNAPSHOT.jar compile --patterns:patterns/demo/a_seq_b_or_c.sre --declarations:patterns/demo/declarations.sre --outputFsm:results/a_seq_b_or_c.fsm

Now, results/a_seq_b_or_c.fsm is the produced serialized finite state machine. Note that we also provided as input a declarations.sre file. This file simply lets the engine know that the three predicates IsEventTypePredicate(A), IsEventTypePredicate(B) and IsEventTypePredicate(C) are mutually exclusive (i.e., an event can have only one type). This helps the compiler create a more compact automaton. We can use this FSM to perform event recognition on this simple dataset:

$ java -jar cef/target/scala-2.12/wayeb-0.2.0-SNAPSHOT.jar recognition --fsm:results/a_seq_b_or_c.fsm --stream:data/demo/data.csv --statsFile:results/recstats

Forecasting

For forecasting, we first need to use a training dataset in order to learn a probabilistic model for the FSM. For this simple guide, we will use $WAYEB_HOME/data/demo/data.csv both as a training and as a test dataset, solely for convenience. Normally, you should use different datasets.

We first run maximum likelihood estimation:

$ java -jar cef/target/scala-2.12/wayeb-0.2.0-SNAPSHOT.jar mle --fsm:results/a_seq_b_or_c.fsm --stream:data/demo/data.csv --outputMc:results/a_seq_b_or_c.mc

The file results/a_seq_b_or_c.mc is the serialized Markov model. The final step is to use the FSM and the Markov model to perform forecasting:

$ java -jar cef/target/scala-2.12/wayeb-0.2.0-SNAPSHOT.jar forecasting --modelType:fmm --fsm:results/a_seq_b_or_c.fsm --mc:results/a_seq_b_or_c.mc --stream:data/demo/data.csv --statsFile:results/forestats --threshold:0.5 --maxSpread:10 --horizon:20 --spreadMethod:classify-nextk

License

Copyright (c) Elias Alevizos

Wayeb comes with ABSOLUTELY NO WARRANTY.

Wayeb follows a dual licensing scheme.

For use by individuals, Wayeb is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. This license is provided exclusively for research purposes. The results of any such research involving Wayeb must be made publicly available.

For commercial/institutional/governmental use or any other use by private or public legal entities, sharing, modifying and distributing Wayeb or any derivatives of it in any form, such as source code, libraries and executables, requires the written permission of its author(s) (Elias Alevizos), possibly accompanied by a request for licensing fees.

Documentation

Citing Wayeb

If you want to cite Wayeb, use the following references:

@inproceedings{DBLP:conf/debs/AlevizosAP17,
  author    = {Elias Alevizos and
               Alexander Artikis and
               George Paliouras},
  title     = {Event Forecasting with Pattern Markov Chains},
  booktitle = {Proceedings of the 11th {ACM} International Conference on Distributed
               and Event-based Systems, {DEBS} 2017, Barcelona, Spain, June 19-23,
               2017},
  pages     = {146--157},
  publisher = {{ACM}},
  year      = {2017},
  url       = {https://doi.org/10.1145/3093742.3093920},
  doi       = {10.1145/3093742.3093920}
} 
@inproceedings{DBLP:conf/lpar/AlevizosAP18,
  author    = {Elias Alevizos and
               Alexander Artikis and
               Georgios Paliouras},
  editor    = {Gilles Barthe and
               Geoff Sutcliffe and
               Margus Veanes},
  title     = {Wayeb: a Tool for Complex Event Forecasting},
  booktitle = {{LPAR-22.} 22nd International Conference on Logic for Programming,
               Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-21 November
               2018},
  series    = {EPiC Series in Computing},
  volume    = {57},
  pages     = {26--35},
  publisher = {EasyChair},
  year      = {2018},
  url       = {https://easychair.org/publications/paper/VKP1}
}

Contributors

Popular Forecasting Projects
Popular Dataset Projects
Popular Machine Learning Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Dataset
Scala
Regular Expression
Forecasting
Fsm
Cep
Stream Processing