Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Seaborn | 10,499 | 6,393 | 3,017 | 6 days ago | 30 | June 27, 2022 | 114 | bsd-3-clause | Python | |
Statistical data visualization in Python | ||||||||||
Scientific Visualization Book | 9,131 | 11 days ago | 17 | other | Python | |||||
An open access book on scientific visualization using python and matplotlib | ||||||||||
Yellowbrick | 3,941 | 31 | 36 | 9 days ago | 24 | February 19, 2022 | 88 | apache-2.0 | Python | |
Visual analysis and diagnostic tools to facilitate machine learning model selection. | ||||||||||
Itermplot | 1,292 | 5 | 1 | 2 years ago | 20 | July 08, 2021 | 16 | Python | ||
An awesome iTerm2 backend for Matplotlib, so you can plot directly in your terminal. | ||||||||||
Mplcyberpunk | 1,093 | 2 | 6 months ago | 11 | July 07, 2022 | 3 | mit | Python | ||
"Cyberpunk style" for matplotlib plots | ||||||||||
Geoplot | 1,053 | 3 | 1 | a month ago | 21 | March 18, 2022 | 22 | mit | Python | |
High-level geospatial data visualization library for Python. | ||||||||||
Pynamical | 518 | 10 months ago | 10 | May 23, 2022 | mit | Python | ||||
Pynamical is a Python package for modeling and visualizing discrete nonlinear dynamical systems, chaos, and fractals. | ||||||||||
Pywaffle | 493 | 2 | 10 months ago | 27 | June 08, 2022 | 4 | mit | Python | ||
🧇 Make Waffle Charts in Python. | ||||||||||
Netgraph | 481 | 2 | 6 days ago | 39 | April 21, 2022 | 5 | gpl-3.0 | Python | ||
Publication-quality network visualisations in python | ||||||||||
Haupt | 452 | 5 days ago | 1 | October 04, 2022 | agpl-3.0 | Python | ||||
Lineage metadata API, artifacts streams, sandbox, API, and spaces for Polyaxon |
A project to make beautiful visualizations from Strava data. Heavily inspired by the wonderful R library by Markus Volz.
pip install git+git://github.com/colcarroll/strava_calendar.git
First download your data from Strava (see below for how). The last step gives you a zip_path
to the archive with all the data. This is quite slow the first time you run it for a zip file and year (~5mins), but quite fast after that (~5s).
from strava_calendar import plot_calendar
plot_calendar(zip_path=zip_path, year=2018)
You can control how many columns there are, the spacing between months and columns, and the label in the top left:
plot_calendar(zip_path=zip_path, year=2017, n_cols=6, month_gap=1.5, col_gap=1, label='')
You can also plot a single column of weeks, which is pleasant.
plot_calendar(zip_path=zip_path, year=2017, n_cols=1)
If you want to write more custom code, you can give that a shot, too:
import datetime
import matplotlib.pyplot as plt
from strava_calendar import Plotter, get_data
data = get_data(zip_path, 'running', datetime.datetime(2018, 1, 1), datetime.datetime(2019, 1, 1))
plotter = Plotter(data)
fig, ax = plt.subplots(figsize=(9, 6))
fig, ax, offset = plotter.plot_month(year=2018, month=6, fig=fig, ax=ax)
ax.text(0, offset + 4.2, 'Weeee!', fontdict={'fontsize': 32, 'fontweight': 'heavy'}, alpha=0.5)
The process for downloading data is also described on the Strava website: