Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Yolov5 | 39,026 | 3 hours ago | 35 | May 21, 2022 | 276 | agpl-3.0 | Python | |||
YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite | ||||||||||
Mmdetection | 24,385 | 1 | 9 | 12 hours ago | 37 | June 01, 2022 | 798 | apache-2.0 | Python | |
OpenMMLab Detection Toolbox and Benchmark | ||||||||||
Deep Learning For Image Processing | 14,599 | 3 months ago | 28 | gpl-3.0 | Python | |||||
deep learning for image processing including classification and object-detection etc. | ||||||||||
Yolov3 | 9,528 | a day ago | 6 | agpl-3.0 | Python | |||||
YOLOv3 in PyTorch > ONNX > CoreML > TFLite | ||||||||||
Cvat | 9,452 | 3 hours ago | 2 | September 08, 2022 | 490 | mit | TypeScript | |||
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. | ||||||||||
Ultralytics | 8,579 | 5 hours ago | 752 | agpl-3.0 | Python | |||||
NEW - YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite | ||||||||||
Yolox | 8,191 | 11 days ago | 3 | April 22, 2022 | 647 | apache-2.0 | Python | |||
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. Documentation: https://yolox.readthedocs.io/ | ||||||||||
Pytorch Grad Cam | 7,414 | 1 | 14 days ago | 25 | May 20, 2022 | 71 | mit | Python | ||
Advanced AI Explainability for computer vision. Support for CNNs, Vision Transformers, Classification, Object detection, Segmentation, Image similarity and more. | ||||||||||
Techniques | 6,342 | a month ago | apache-2.0 | |||||||
Techniques for deep learning with satellite & aerial imagery | ||||||||||
Autogluon | 5,795 | 4 hours ago | 235 | apache-2.0 | Python | |||||
AutoGluon: AutoML for Image, Text, Time Series, and Tabular Data |
PyTorch implement of Deeply Supervised Salient Object Detection with Short Connection
The official caffe version: DSS
The information of Loss:
Example output:
Note: here the "blur boundary" caused by bad combine method
Different connection output:
Dataset (MSRA-B) | Paper | Here (v1) | Only Fusion (v1) | Here (v2) | Only Fusion (v2) | Here(v2 700) |
---|---|---|---|---|---|---|
MAE (without CRF) | 0.043 | 0.054 | 0.052 | 0.068 | 0.052 | 0.051 |
F_beta (without CRF) | 0.920 | 0.910 | 0.914 | 0.912 | 0.910 | 0.918 |
MAE (with CRF) | 0.028 | 0.047 | 0.048 | 0.047 | 0.049 | 0.047 |
F_beta (with CRF) | 0.927 | 0.916 | 0.917 | 0.915 | 0.918 | 0.923 |
Note:
git clone [email protected]:AceCoooool/DSS-pytorch.git
cd DSS-pytorch/
Download the MSRA-B dataset. (If you can not find this dataset, email to me --- I am not sure whether it's legal to put it on BaiDuYun)
# file construction
MSRA-B
--- annotation
--- xxx.png
--- xxx.png
--- image
--- xxx.jpg
--- xxx.jpg
--- test_cvpr2013.txt
--- train_cvpr2013.txt
--- valid_cvpr2013.txt
--- test_cvpr2013_debug.txt
--- train_cvpr2013_debug.txt
--- valid_cvpr2013_debug.txt
cd tools/
python extract_vgg.py
cd ..
pleease see demo.ipynb
Note:
weights
directorypython main.py --mode='train' --train_path='you_data' --label_path='you_label' --batch_size=8 --visdom=True --train_file='you_file'
Note:
--val=True
add the validation (but your need to add the --val_path
, --val_file
and --val_label
)you_data, you_label
means your training data root. (connect to the step 2)youhome/data/MSRA-B
(you can not "implicity" the path)python main.py --mode='test' --test_path='you_data' --test_label='your_label' --use_crf=False --model='your_trained_model' --test_file='you_file'
Note:
bath_size=1
--use_crf=True
:means use CRF post-process