Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Spektral | 2,259 | 3 | a day ago | 33 | April 09, 2022 | 62 | mit | Python | ||
Graph Neural Networks with Keras and Tensorflow 2. | ||||||||||
Gat | 2,078 | 2 years ago | 27 | mit | Python | |||||
Graph Attention Networks (https://arxiv.org/abs/1710.10903) | ||||||||||
Nlp Journey | 1,528 | 15 days ago | 3 | April 29, 2020 | apache-2.0 | Python | ||||
Documents, papers and codes related to Natural Language Processing, including Topic Model, Word Embedding, Named Entity Recognition, Text Classificatin, Text Generation, Text Similarity, Machine Translation),etc. All codes are implemented intensorflow 2.0. | ||||||||||
Hopfield Layers | 1,258 | a year ago | other | Python | ||||||
Hopfield Networks is All You Need | ||||||||||
Deep_architecture_genealogy | 1,196 | 2 years ago | 6 | Python | ||||||
Deep Learning Architecture Genealogy Project | ||||||||||
Rcan | 1,180 | 6 months ago | 72 | Python | ||||||
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks" | ||||||||||
Attention Gated Networks | 1,099 | 3 years ago | mit | Python | ||||||
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation | ||||||||||
Textclassifier | 1,003 | 2 years ago | 29 | apache-2.0 | Python | |||||
Text classifier for Hierarchical Attention Networks for Document Classification | ||||||||||
Nlp Paper | 820 | 6 months ago | 2 | May 09, 2022 | 1 | apache-2.0 | Python | |||
自然语言处理领域下的相关论文(附阅读笔记),复现模型以及数据处理等(代码含TensorFlow和PyTorch两版本) | ||||||||||
Spatial Transformer Network | 661 | 1 | 5 years ago | 3 | June 02, 2018 | 17 | mit | Python | ||
A Tensorflow implementation of Spatial Transformer Networks. |
Official implementation.
by Xu Qin, Zhilin Wang et al. Peking University and Beijing University of Aeronautics & Astronautics.
@inproceedings{qin2020ffa,
title={FFA-Net: Feature fusion attention network for single image dehazing},
author={Qin, Xu and Wang, Zhilin and Bai, Yuanchao and Xie, Xiaodong and Jia, Huizhu},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={07},
pages={11908--11915},
year={2020}
}
Dataset website:RESIDE ; Paper arXiv version:[RESIDE: A Benchmark for Single Image Dehazing]
FFA-Net
|-- README.md
|-- net
|-- data
|-- RESIDE
|-- ITS
|-- hazy
|-- *.png
|-- clear
|-- *.png
|-- OTS
|-- hazy
|-- *.jpg
|-- clear
|-- *.jpg
|-- SOTS
|-- indoor
|-- hazy
|-- *.png
|-- clear
|-- *.png
|-- outdoor
|-- hazy
|-- *.jpg
|-- clear
|-- *.png
Methods | Indoor(PSNR/SSIM) | Outdoor(PSNR/SSIM) |
---|---|---|
DCP | 16.62/0.8179 | 19.13/0.8148 |
AOD-Net | 19.06/0.8504 | 20.29/0.8765 |
DehazeNet | 21.14/0.8472 | 22.46/0.8514 |
GFN | 22.30/0.8800 | 21.55/0.8444 |
GCANet | 30.23/0.9800 | -/- |
Ours | 36.39/0.9886 | 33.57/0.9840 |
Remove annotation from main.py if you want to use tensorboard
or view intermediate predictions
If you have more computing resources, expanding bs
, crop_size
, gps
, blocks
will lead to better results
train network on ITS
dataset
python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='its_train' --testset='its_test' --steps=500000 --eval_step=5000
train network on OTS
dataset
python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='ots_train' --testset='ots_test' --steps=1000000 --eval_step=5000
Trained_models are available at baidudrive: https://pan.baidu.com/s/1-pgSXN6-NXLzmTp21L_qIg with code: 4gat
or google drive: https://drive.google.com/drive/folders/19_lSUPrpLDZl9AyewhHBsHidZEpTMIV5?usp=sharing
Put models in the net/trained_models/
folder.
Put your images in net/test_imgs/
python test.py --task='its or ots' --test_imgs='test_imgs'