Ffa Net

FFA-Net: Feature Fusion Attention Network for Single Image Dehazing
Alternatives To Ffa Net
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Spektral2,2593a day ago33April 09, 202262mitPython
Graph Neural Networks with Keras and Tensorflow 2.
Gat2,078
2 years ago27mitPython
Graph Attention Networks (https://arxiv.org/abs/1710.10903)
Nlp Journey1,528
15 days ago3April 29, 2020apache-2.0Python
Documents, papers and codes related to Natural Language Processing, including Topic Model, Word Embedding, Named Entity Recognition, Text Classificatin, Text Generation, Text Similarity, Machine Translation),etc. All codes are implemented intensorflow 2.0.
Hopfield Layers1,258
a year agootherPython
Hopfield Networks is All You Need
Deep_architecture_genealogy1,196
2 years ago6Python
Deep Learning Architecture Genealogy Project
Rcan1,180
6 months ago72Python
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"
Attention Gated Networks1,099
3 years agomitPython
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation
Textclassifier1,003
2 years ago29apache-2.0Python
Text classifier for Hierarchical Attention Networks for Document Classification
Nlp Paper820
6 months ago2May 09, 20221apache-2.0Python
自然语言处理领域下的相关论文(附阅读笔记),复现模型以及数据处理等(代码含TensorFlow和PyTorch两版本)
Spatial Transformer Network661
15 years ago3June 02, 201817mitPython
A Tensorflow implementation of Spatial Transformer Networks.
Alternatives To Ffa Net
Select To Compare


Alternative Project Comparisons
Readme

FFA-Net: Feature Fusion Attention Network for Single Image Dehazing (AAAI 2020)

Official implementation.


by Xu Qin, Zhilin Wang et al. Peking University and Beijing University of Aeronautics & Astronautics.

Citation

@inproceedings{qin2020ffa,
title={FFA-Net: Feature fusion attention network for single image dehazing},
author={Qin, Xu and Wang, Zhilin and Bai, Yuanchao and Xie, Xiaodong and Jia, Huizhu},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={34},
number={07},
pages={11908--11915},
year={2020}
}

Dependencies and Installation

  • python3
  • PyTorch>=1.0
  • NVIDIA GPU+CUDA
  • numpy
  • matplotlib
  • tensorboardX(optional)

Datasets Preparation

Dataset website:RESIDE ; Paper arXiv version:[RESIDE: A Benchmark for Single Image Dehazing]

FILE STRUCTURE
    FFA-Net
    |-- README.md
    |-- net
    |-- data
        |-- RESIDE
            |-- ITS
                |-- hazy
                    |-- *.png
                |-- clear
                    |-- *.png
            |-- OTS 
                |-- hazy
                    |-- *.jpg
                |-- clear
                    |-- *.jpg
            |-- SOTS
                |-- indoor
                    |-- hazy
                        |-- *.png
                    |-- clear
                        |-- *.png
                |-- outdoor
                    |-- hazy
                        |-- *.jpg
                    |-- clear
                        |-- *.png

Metrics update

Methods Indoor(PSNR/SSIM) Outdoor(PSNR/SSIM)
DCP 16.62/0.8179 19.13/0.8148
AOD-Net 19.06/0.8504 20.29/0.8765
DehazeNet 21.14/0.8472 22.46/0.8514
GFN 22.30/0.8800 21.55/0.8444
GCANet 30.23/0.9800 -/-
Ours 36.39/0.9886 33.57/0.9840

Usage

Train

Remove annotation from main.py if you want to use tensorboard or view intermediate predictions

If you have more computing resources, expanding bs, crop_size, gps, blocks will lead to better results

train network on ITS dataset

python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='its_train' --testset='its_test' --steps=500000 --eval_step=5000

train network on OTS dataset

python main.py --net='ffa' --crop --crop_size=240 --blocks=19 --gps=3 --bs=2 --lr=0.0001 --trainset='ots_train' --testset='ots_test' --steps=1000000 --eval_step=5000

Test

Trained_models are available at baidudrive: https://pan.baidu.com/s/1-pgSXN6-NXLzmTp21L_qIg with code: 4gat

or google drive: https://drive.google.com/drive/folders/19_lSUPrpLDZl9AyewhHBsHidZEpTMIV5?usp=sharing Put models in the net/trained_models/folder.

Put your images in net/test_imgs/

python test.py --task='its or ots' --test_imgs='test_imgs'

Samples

Popular Network Projects
Popular Attention Projects
Popular Networking Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Network
Dataset
Pytorch
Attention
Fusion