Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Sr Lstm | 78 | 9 months ago | 1 | mit | Python | |||||
States Refinement LSTM | ||||||||||
Crypton X | 12 | a year ago | R | |||||||
Cryptocurrency market cap-price prediction and visualization web app | ||||||||||
Crypto Predict | 11 | 4 years ago | mit | Jupyter Notebook | ||||||
A dockerized prediction API for crypto. | ||||||||||
Cryptocoin Tensorflow Demo | 8 | 5 years ago | Jupyter Notebook | |||||||
Simple demo ilustrating the use of LSTM neural network to predict daily changes in the Ethereum cryptocurrency | ||||||||||
Eth_predictor | 6 | 2 months ago | 1 | mit | Python | |||||
Ethereum Cryptocurrency Real Time Prediction (ETH/USD) | ||||||||||
Ethereum Price Prediction Using Lstm | 5 | 3 years ago | Jupyter Notebook | |||||||
Capstone project for the course Deep Learning as part of the master Data Science and Society. | ||||||||||
Deep Crypto Predict | 3 | a year ago | Jupyter Notebook | |||||||
Using novel RNN-LSTM architecture for cryptocurrency market analysis | ||||||||||
Eth_priceprediction_model | 2 | 4 years ago | Python | |||||||
Predict Ethereum token price using LSTM neural network model | ||||||||||
Thinkful_final_capstone | 2 | 5 years ago | Jupyter Notebook | |||||||
Cil | 2 | 2 years ago | mit | Python | ||||||
Text Sentiment Classification (Computational Intelligence Lab, ETH Zurich, 2018) |
States Refinement LSTM
This is the code for
SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction. CVPR2019
The code is tested on Ubuntu 16.04, Python 3.5, numpy 1.13, pytorch 1.0.1.post2.
The Default settings are to train on ETH-univ. Data cache and models will be in the subdirectory "./savedata/0/".
python .../SRLSTM/train.py
Configuration files are also created after the first run, arguments could be modified through configuration files.
Priority: command line > configuration files > default values in script
The datasets are selected on arguments '--test_set'. Five datasets in ETH/UCY are corresponding to the value of [0,1,2,3,4].
This command is to train model for ETH-hotel and save cache files in '/Your/save/directory/1'.
python .../SRLSTM/train.py --test_set 1 --save_base_dir '/Your/save/directory'
You can set your model name by "--train_model" and model type by "--model".
Detailed arguments description is given in train.py.
python .../SRLSTM/train.py --phase test --test_set X --load_model XXX
Test example models are given in ./savedata/X/testmodel/testmodel_XXX.tar
To test on UCY-univ, using
python .../SRLSTM/train.py --phase test --test_set 4 --load_model 324 --batch_around_ped 64
To test on your own models, use your train.py and change the arguments of '--phase', '--train_model','--load_model' to 'test','YourModelName','YourModelEpoch'.
If you find this code useful, please cite us as
@inproceedings{zhang2019srlstm,
title={SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction},
author={Zhang, Pu and Ouyang, Wanli and Zhang, Pengfei and Xue, Jianru and Zheng, Nanning},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}