Awesome Open Source
Awesome Open Source


License NuGet

A library that simplifies intercepting application function calls using managed code and the .NET Core runtime.

Inspired and based on the great EasyHook.



If the project has helped you in any way and you want to give back, consider donating to great organizations such as Black Girls Code and Hack the Hood, or volunteering at others like The Hidden Genius Project.

Build status

Build server Platform Build status
AppVeyor Windows Build status
Azure Pipelines Linux, Windows Build Status
Travis CI Linux Build Status


  • Intercept public API functions such as CreateFile
  • Intercept internal functions by address or name if symbol files are available
  • Supports NuGet package references for the plugin libraries
  • Supports multiple architectures for the plugins

For more information, see the wiki.

Supported Platforms

CoreHook supports application function call interception on various architectures running Windows. Linux and macOS support is also planned.

Architecture Operating System
x86 Windows
x64 Windows
ARM Windows 10 IoT Core

Tested Platforms

Operating System Architecture(s)
Windows 7 SP1 x86, x64
Windows 8.1 x86, x64
Windows 10 (Win32) x86, x64, ARM
Windows 10 (UWP) x86, x64
Windows Server 2008 x86, x64
Windows Server 2012 x86, x64
Windows Server 2016 x86, x64
Windows Server 2019 x86, x64



Plugin Examples



If you are building the CoreHook project (for example, with dotnet build) and not publishing it, you must setup the project configuration as described below.

Project Configuration

The project provides two options for configuring the runtime:

  1. A local configuration file named CoreHook.CoreLoad.runtimeconfig.json (which is located next to CoreHook.CoreLoad.dll assembly in the CoreHook output directory) to initialize CoreCLR.
  2. A global configuration file named dotnet.runtimeconfig.json.

The host module will first attempt to use the local configuration file, then it will check for the global configuration file and use that if it exists, and finally it will use the directory of the CoreHook.CoreLoad.dll assembly for resolving dependencies.

The runtimeconfig file must contain the framework information for hosting .NET Core in the target application. When you build any .NET Core application, these files are generated to the output directory. For more information on the configuration options, see here.

You can use the CoreHook.FileMonitor.runtimeconfig.json and files found in your build output directory as references for creating the global or local configuration files.

The runtime configuration file should look like the one below, where additionalProbingPaths contains file paths the host module can check for additional dependencies. This guide assumes you have installed the .NET Core 2.2 runtime or SDK for both x86 and x64 architectures.

Notice: Either replace <user> with your local computer user name or modify the paths to point to where your NuGet packages are installed. Take a look at in the output directory to find your paths.

  "runtimeOptions": {
    "tfm": "netcoreapp2.2",
    "framework": {
      "name": "Microsoft.NETCore.App",
      "version": "2.2.0"
    "additionalProbingPaths": [
      "C:\\Program Files\\dotnet\\sdk\\NuGetFallbackFolder"

Local Configuration

To use a local configuration, create a file with the contents described above called CoreHook.CoreLoad.runtimeconfig.json and save it to the project output directory where CoreHook.CoreLoad.dll is located.

Global Configuration

To use a global configuration, first create a dotnet.runtimeconfig.json file with the contents described above and save it to a folder. This will be the global configuration file the project uses to initialize the runtime in the target processs. In this example, our file is saved at C:\CoreHook\dotnet.runtimeconfig.json.

Set the environment variables for the x86 and x64 applications to the directory of the runtime configuration file. This allows you to have different configuration files for 32-bit and 64-bit applications.

For example (if you saved the file another installation directory or drive, make sure to use that path instead):

  • Set CORE_ROOT_32 to C:\CoreHook for 32-bit applications.

  • Set CORE_ROOT_64 to C:\CoreHook for 64-bit applications.

setx CORE_ROOT_64 "C:\CoreHook"
setx CORE_ROOT_32 "C:\CoreHook"

Or set them for the current command prompt session with:

set CORE_ROOT_64=C:\CoreHook
set CORE_ROOT_32=C:\CoreHook

Then, you can either open the CoreHook solution in Visual Studio or run dotnet build to build the library and the examples.

Installing Dependencies

Build or download the binary releases from CoreHook.Hooking and CoreHook.Host. You can use the download-deps script, which downloads the latest binary releases to a folder called deps in the root of the project. Place the coreload32.dll (X86, ARM) and/or coreload64.dll (X64, ARM64) binaries in the output directory of your program. Then, place the corehook32.dll (X86, ARM) and/or corehook64.dll (X64, ARM64) binaries in the same output directory. These are all of the required files for using the examples above.

You can then start the program you built above.

Windows 10 UWP

You can get the Application User Model Id (AUMID) required for launching UWP apps for the FileMonitor example with this script:

$installedapps = get-AppxPackage

$aumidList = @()
foreach ($app in $installedapps)
    foreach ($id in (Get-AppxPackageManifest $app)
        $aumidList += $app.packagefamilyname + "!" + $id


You can print the list using the $aumidList variable.

Notes: There is currently no way to set the proper access control on our pipes on the .NET Core platform and the issue is being tracked here so we use P/Invoke to call kernel32.dll!CreateNamedPipe directly.

Windows 10 IoT Core (ARM)

Raspberry Pi itself is supported only as deployment target but there is an unsupported version of the SDK available as well. Read more about the publishing process by following this link.

For Windows 10 IoT Core, you can publish the application by running the publish.ps1 PowerShell script.

.\publish -example win32 -runtime win-arm

Make sure to also copy the coreload32.dll and the corehook32.dll to the directory of the program. For example, the application directory structure should look like this:

        [-] CoreHook.FileMonitor.Hook.deps.json
        [-] CoreHook.FileMonitor.Hook.dll
    [-] CoreHook.FileMonitor.dll
    [-] CoreHook.FileMonitor.exe
    [-] corehook32.dll
    [-] coreload32.dll

You can then copy the folder to your device and start the CoreHook.FileMonitor.exe program.

Publishing Script

The PowerShell script publish.ps1 allows you to publish the examples as self-contained executables. The default configuration is Release and the output will be in the Publish directory, created in the same location as the publishing script.

.\publish -example [uwp|win32] -runtime [Runtime IDentifier] -configuration [Debug|Release]

You can find a list of Runtime IDentifiers here.

For example, the command

.\publish -example win32 -runtime win10-arm

will create a folder called Publish/win32/win10-arm/ containing the CoreHook.FileMonitor example.

Windows Symbol Support

CoreHook supports symbol name lookup from PDBs to get function addresses with the use of LocalHook.GetProcAddress. For symbol lookup to work, you must either place the PDB file in the directory of the target program you are hooking or set the environment variable _NT_SYMBOL_PATH to a symbol server. You can read more about Windows symbol support from the Microsoft documentation here.

Important: To use the complete symbol lookup, you need to have both dbghelp.dll (provides the symbol lookup APIs) and symsrv.dll (provides the symbol server lookup) and in your DLL search path. You can add these files to the directory of your target program or add them to your path. You can get both DLLs by installing the Debugging Tools for Windows.

Example locations where you can find dbghelp.dll and symsrv.dll are:

  • %PROGRAMFILES(X86)%\Windows Kits\10\Debuggers\x86 (For 32-bit applications)
  • %PROGRAMFILES(X86)%\Windows Kits\10\Debuggers\x64 (For 64-bit applications)

An example of what you can set the environment variable _NT_SYMBOL_PATH to is:


The C:\SymbolCache folder is a local cache directory where symbol files can be stored or downloaded to. When Windows needs to retrieve a PDB for a DLL, it can download them from and store them in a folder for use by a debugger.

You can confirm that symbol support is properly configured by running the symbols tests.


Any contributions are all welcome! If you find any problems or want to add features, don't hesitate to open a new issue or create a pull request.


Licensed under the MIT License.


Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
c-sharp (12,663
linux (2,576
windows (1,517
csharp (1,124
dotnet (918
dotnet-core (413
arm (226
dotnetcore (190
uwp (175
x86 (136
x86-64 (120
dotnet-standard (75
arm64 (63
hooking (40