Awesome Open Source
Awesome Open Source

dplyr

CRAN status R-CMD-check Codecov test coverage

Overview

dplyr is a grammar of data manipulation, providing a consistent set of verbs that help you solve the most common data manipulation challenges:

  • mutate() adds new variables that are functions of existing variables
  • select() picks variables based on their names.
  • filter() picks cases based on their values.
  • summarise() reduces multiple values down to a single summary.
  • arrange() changes the ordering of the rows.

These all combine naturally with group_by() which allows you to perform any operation by group. You can learn more about them in vignette("dplyr"). As well as these single-table verbs, dplyr also provides a variety of two-table verbs, which you can learn about in vignette("two-table").

If you are new to dplyr, the best place to start is the data transformation chapter in R for data science.

Backends

In addition to data frames/tibbles, dplyr makes working with other computational backends accessible and efficient. Below is a list of alternative backends:

  • dtplyr: for large, in-memory datasets. Translates your dplyr code to high performance data.table code.

  • dbplyr: for data stored in a relational database. Translates your dplyr code to SQL.

  • sparklyr: for very large datasets stored in Apache Spark.

Installation

# The easiest way to get dplyr is to install the whole tidyverse:
install.packages("tidyverse")

# Alternatively, install just dplyr:
install.packages("dplyr")

Development version

To get a bug fix or to use a feature from the development version, you can install the development version of dplyr from GitHub.

# install.packages("devtools")
devtools::install_github("tidyverse/dplyr")

Cheat Sheet

Usage

library(dplyr)

starwars %>% 
  filter(species == "Droid")
#> # A tibble: 6  14
#>   name   height  mass hair_color skin_color  eye_color birth_year sex   gender  
#>   <chr>   <int> <dbl> <chr>      <chr>       <chr>          <dbl> <chr> <chr>   
#> 1 C-3PO     167    75 <NA>       gold        yellow           112 none  masculi
#> 2 R2-D2      96    32 <NA>       white, blue red               33 none  masculi
#> 3 R5-D4      97    32 <NA>       white, red  red               NA none  masculi
#> 4 IG-88     200   140 none       metal       red               15 none  masculi
#> 5 R4-P17     96    NA none       silver, red red, blue         NA none  feminine
#> #  with 1 more row, and 5 more variables: homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>

starwars %>% 
  select(name, ends_with("color"))
#> # A tibble: 87  4
#>   name           hair_color skin_color  eye_color
#>   <chr>          <chr>      <chr>       <chr>    
#> 1 Luke Skywalker blond      fair        blue     
#> 2 C-3PO          <NA>       gold        yellow   
#> 3 R2-D2          <NA>       white, blue red      
#> 4 Darth Vader    none       white       yellow   
#> 5 Leia Organa    brown      light       brown    
#> #  with 82 more rows

starwars %>% 
  mutate(name, bmi = mass / ((height / 100)  ^ 2)) %>%
  select(name:mass, bmi)
#> # A tibble: 87  4
#>   name           height  mass   bmi
#>   <chr>           <int> <dbl> <dbl>
#> 1 Luke Skywalker    172    77  26.0
#> 2 C-3PO             167    75  26.9
#> 3 R2-D2              96    32  34.7
#> 4 Darth Vader       202   136  33.3
#> 5 Leia Organa       150    49  21.8
#> #  with 82 more rows

starwars %>% 
  arrange(desc(mass))
#> # A tibble: 87  14
#>   name      height  mass hair_color skin_color eye_color birth_year sex   gender
#>   <chr>      <int> <dbl> <chr>      <chr>      <chr>          <dbl> <chr> <chr> 
#> 1 Jabba De    175  1358 <NA>       green-tan orange         600   herm mascu
#> 2 Grievous     216   159 none       brown, wh green, y       NA   male  mascu
#> 3 IG-88        200   140 none       metal      red             15   none  mascu
#> 4 Darth Va    202   136 none       white      yellow          41.9 male  mascu
#> 5 Tarfful      234   136 brown      brown      blue            NA   male  mascu
#> #  with 82 more rows, and 5 more variables: homeworld <chr>, species <chr>,
#> #   films <list>, vehicles <list>, starships <list>

starwars %>%
  group_by(species) %>%
  summarise(
    n = n(),
    mass = mean(mass, na.rm = TRUE)
  ) %>%
  filter(
    n > 1,
    mass > 50
  )
#> # A tibble: 8  3
#>   species      n  mass
#>   <chr>    <int> <dbl>
#> 1 Droid        6  69.8
#> 2 Gungan       3  74  
#> 3 Human       35  82.8
#> 4 Kaminoan     2  88  
#> 5 Mirialan     2  53.1
#> #  with 3 more rows

Getting help

If you encounter a clear bug, please file an issue with a minimal reproducible example on GitHub. For questions and other discussion, please use community.rstudio.com or the manipulatr mailing list.


Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

Related Awesome Lists
Top Programming Languages
Top Projects

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
R (57,856
Grammar (4,706
Dplyr (478
Data Manipulation (322