Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Pytorch Tutorial | 7,263 | 2 months ago | 28 | mit | Jupyter Notebook | |||||
Build your neural network easy and fast, 莫烦Python中文教学 | ||||||||||
Gcn | 6,621 | 15 days ago | 121 | mit | Python | |||||
Implementation of Graph Convolutional Networks in TensorFlow | ||||||||||
Cnn Explainer | 6,389 | 20 days ago | mit | JavaScript | ||||||
Learning Convolutional Neural Networks with Interactive Visualization. | ||||||||||
Cnn Text Classification Tf | 5,256 | 3 years ago | 110 | apache-2.0 | Python | |||||
Convolutional Neural Network for Text Classification in Tensorflow | ||||||||||
T81_558_deep_learning | 5,225 | 15 days ago | 2 | other | Jupyter Notebook | |||||
Washington University (in St. Louis) Course T81-558: Applications of Deep Neural Networks | ||||||||||
Machine Learning Collection | 4,989 | a day ago | 88 | mit | Python | |||||
A resource for learning about Machine learning & Deep Learning | ||||||||||
Deep Learning V2 Pytorch | 4,865 | 18 days ago | 11 | mit | Jupyter Notebook | |||||
Projects and exercises for the latest Deep Learning ND program https://www.udacity.com/course/deep-learning-nanodegree--nd101 | ||||||||||
Unet | 4,040 | 4 months ago | 199 | mit | Jupyter Notebook | |||||
unet for image segmentation | ||||||||||
Image Super Resolution | 3,376 | a year ago | 85 | apache-2.0 | Python | |||||
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks. | ||||||||||
Pygcn | 2,952 | 3 years ago | 42 | mit | Python | |||||
Graph Convolutional Networks in PyTorch |
Task: semantic segmentation, it's a very important task for automated driving
The model is based on CVPR '15 best paper honorable mentioned Fully Convolutional Networks for Semantic Segmentation
I train with two popular benchmark dataset: CamVid and Cityscapes
dataset | n_class | pixel accuracy |
---|---|---|
Cityscapes | 20 | 96% |
CamVid | 32 | 93% |
pip3 install -r requirements.txt
and download pytorch 0.2.0 from pytorch.org
and download CamVid dataset (recommended) or Cityscapes dataset
create a directory named "CamVid", and put data into it, then run python codes:
python3 python/CamVid_utils.py
python3 python/train.py CamVid
create a directory named "CityScapes", and put data into it, then run python codes:
python3 python/CityScapes_utils.py
python3 python/train.py CityScapes
Po-Chih Huang / @pochih