Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Bcpd | 214 | a month ago | 9 | mit | C | |||||
Bayesian Coherent Point Drift (BCPD/BCPD++/GBCPD/GBCPD++) | ||||||||||
Personalizedmultitasklearning | 53 | 3 years ago | Python | |||||||
Code for performing 3 multitask machine learning methods: deep neural networks, Multitask Multi-kernel Learning (MTMKL), and a hierarchical Bayesian model (HBLR). | ||||||||||
Approxbayes.jl | 44 | 8 months ago | 12 | other | Julia | |||||
Approximate Bayesian Computation (ABC) algorithms for likelihood free inference in julia | ||||||||||
Simpleabc | 29 | 7 years ago | mit | Jupyter Notebook | ||||||
A Python package for Approximate Bayesian Computation | ||||||||||
Bkmr | 23 | a year ago | 7 | R | ||||||
Bayesian kernel machine regression | ||||||||||
Kerneldensityestimate.jl | 22 | 7 months ago | 10 | lgpl-2.1 | Julia | |||||
Kernel Density Estimate with product approximation using multiscale Gibbs sampling | ||||||||||
Gpsig | 14 | 2 years ago | 1 | apache-2.0 | Jupyter Notebook | |||||
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances | ||||||||||
Bmtmkl | 13 | 5 years ago | R | |||||||
Bayesian Multitask Multiple Kernel Learning | ||||||||||
Bayesian Ntk | 13 | 2 years ago | Jupyter Notebook | |||||||
Code to accompany paper 'Bayesian Deep Ensembles via the Neural Tangent Kernel' | ||||||||||
Herding Paper | 11 | 7 years ago | mit | TeX | ||||||
Optimally-weighted herding is Bayesian Quadrature |
This repository contains Matlab and R implementations of the algorithm described in "A community effort to assess and improve drug sensitivity prediction algorithms", which is appearing in Nature Biotechnology.
demo.m file shows how to use the algorithm in Matlab. demo.R file shows how to use the algorithm in R.
If you use the algorithm implemented in this repository, please cite the following paper:
James C. Costello, Laura M. Heiser, Elisabeth Georgii, Mehmet Gonen, Michael P. Menden, Nicholas J. Wang, Mukesh Bansal, Muhammad Ammad-ud-din, Petteri Hintsanen, Suleiman A. Khan, John-Patrick Mpindi, Olli Kallioniemi, Antti Honkela, Tero Aittokallio, Krister Wennerberg, NCI DREAM Community, James J. Collins, Dan Gallahan, Dinah Singer, Julio Saez-Rodriguez, Samuel Kaski, Joe W. Gray, and Gustavo Stolovitzky. A community effort to assess and improve drug sensitivity prediction algorithms. Nature Biotechnology, 32(12):1202-1212, 2014.