Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Deepdetect | 2,456 | 16 days ago | 92 | other | C++ | |||||
Deep Learning API and Server in C++14 support for Caffe, PyTorch,TensorRT, Dlib, NCNN, Tensorflow, XGBoost and TSNE | ||||||||||
Ml Algorithms On Scikit And Keras | 8 | 5 years ago | Jupyter Notebook | |||||||
Implementation scripts of Machine Learning algorithms on Scikit-learn and Keras for complete novice.. | ||||||||||
Plant Seedlings Classification | 2 | 5 years ago | HTML | |||||||
Determine a seedling Species from an image based on Kaggle Competition | ||||||||||
Fake News Detection | 1 | 5 years ago | HTML | |||||||
Let's hunt Fake News using Word2Vec, GloVe, FastText or learnt from corpus German embeddings. | ||||||||||
Locp_modb | 1 | a year ago | apache-2.0 | Jupyter Notebook | ||||||
Exercises of the Laboratory of Computational Physics Mod. B | ||||||||||
Exploring_ember_dataset | 1 | a year ago | Jupyter Notebook | |||||||
In this repo we explore the EMBER 2018 dataset - malware/benign classification. we present some Dim-Reduction algo's, feature selections and comparisons between most common and robust classification models: XGBoost, LightGBM, MalConv |
DeepDetect (https://www.deepdetect.com/) is a machine learning API and server written in C++11. It makes state of the art machine learning easy to work with and integrate into existing applications. It has support for both training and inference, with automatic conversion to embedded platforms with TensorRT (NVidia GPU) and NCNN (ARM CPU).
It implements support for supervised and unsupervised deep learning of images, text, time series and other data, with focus on simplicity and ease of use, test and connection into existing applications. It supports classification, object detection, segmentation, regression, autoencoders, ...
And it relies on external machine learning libraries through a very generic and flexible API. At the moment it has support for:
Please join the community on Gitter, where we help users get through with installation, API, neural nets and connection to external applications.
Build type | STABLE | DEVEL |
---|---|---|
SOURCE |
All DeepDetect Docker images available from https://docker.jolibrain.com/.
curl -X GET https://docker.jolibrain.com/v2/_catalog
deepdetect_cpu
image:curl -X GET https://docker.jolibrain.com/v2/deepdetect_cpu/tags/list
Ecosystem
Documentation:
Demos:
Performance tools and report done on NVidia Desktop and embedded GPUs, along with Raspberry Pi 3.
Caffe | Caffe2 | XGBoost | TensorRT | NCNN | Libtorch | Tensorflow | T-SNE | Dlib | |
---|---|---|---|---|---|---|---|---|---|
Serving | |||||||||
Training (CPU) | Y | Y | Y | N/A | N/A | Y | N | Y | N |
Training (GPU) | Y | Y | Y | N/A | N/A | Y | N | Y | N |
Inference (CPU) | Y | Y | Y | N | Y | Y | Y | N/A | Y |
Inference (GPU) | Y | Y | Y | Y | N | Y | Y | N/A | Y |
Models | |||||||||
Classification | Y | Y | Y | Y | Y | Y | Y | N/A | Y |
Object Detection | Y | Y | N | Y | Y | N | N | N/A | Y |
Segmentation | Y | N | N | N | N | N | N | N/A | N |
Regression | Y | N | Y | N | N | Y | N | N/A | N |
Autoencoder | Y | N | N/A | N | N | N | N | N/A | N |
NLP | Y | N | Y | N | N | Y | N | Y | N |
OCR / Seq2Seq | Y | N | N | N | Y | N | N | N | N |
Time-Series | Y | N | N | N | Y | Y | N | N | N |
Data | |||||||||
CSV | Y | N | Y | N | N | N | N | Y | N |
SVM | Y | N | Y | N | N | N | N | N | N |
Text words | Y | N | Y | N | N | N | N | N | N |
Text characters | Y | N | N | N | N | N | N | Y | N |
Images | Y | Y | N | Y | Y | Y | Y | Y | Y |
Time-Series | Y | N | N | N | Y | N | N | N | N |
Caffe | Tensorflow | Source | Top-1 Accuracy (ImageNet) | |
---|---|---|---|---|
AlexNet | Y | N | BVLC | 57.1% |
SqueezeNet | Y | N | DeepScale | 59.5% |
Inception v1 / GoogleNet | Y | Y | BVLC / Google | 67.9% |
Inception v2 | N | Y | 72.2% | |
Inception v3 | N | Y | 76.9% | |
Inception v4 | N | Y | 80.2% | |
ResNet 50 | Y | Y | MSR | 75.3% |
ResNet 101 | Y | Y | MSR | 76.4% |
ResNet 152 | Y | Y | MSR | 77% |
Inception-ResNet-v2 | N | Y | 79.79% | |
VGG-16 | Y | Y | Oxford | 70.5% |
VGG-19 | Y | Y | Oxford | 71.3% |
ResNext 50 | Y | N | terrychenism/ResNeXt | 76.9% |
ResNext 101 | Y | N | terrychenism/ResNeXt | 77.9% |
ResNext 152 | Y | N | terrychenism/ResNeXt | 78.7% |
DenseNet-121 | Y | N | shicai/DenseNet-Caffe | 74.9% |
DenseNet-161 | Y | N | shicai/DenseNet-Caffe | 77.6% |
DenseNet-169 | Y | N | shicai/DenseNet-Caffe | 76.1% |
DenseNet-201 | Y | N | shicai/DenseNet-Caffe | 77.3% |
SE-BN-Inception | Y | N | hujie-frank/SENet | 76.38% |
SE-ResNet-50 | Y | N | hujie-frank/SENet | 77.63% |
SE-ResNet-101 | Y | N | hujie-frank/SENet | 78.25% |
SE-ResNet-152 | Y | N | hujie-frank/SENet | 78.66% |
SE-ResNext-50 | Y | N | hujie-frank/SENet | 79.03% |
SE-ResNext-101 | Y | N | hujie-frank/SENet | 80.19% |
SENet | Y | N | hujie-frank/SENet | 81.32% |
VOC0712 (object detection) | Y | N | https://github.com/weiliu89/caffe/tree/ssd | 71.2 mAP |
InceptionBN-21k | Y | N | pertusa/InceptionBN-21K-for-Caffe | 41.9% |
Inception v3 5K | N | Y | openimages/dataset | |
5-point Face Landmarking Model (face detection) | N | N | http://blog.dlib.net/2017/09/fast-multiclass-object-detection-in.html | |
Front/Rear vehicle detection (object detection) | N | N | http://blog.dlib.net/2017/09/fast-multiclass-object-detection-in.html |
More models:
DeepDetect is designed, implemented and supported by Jolibrain with the help of other contributors.