Mixpanel Statistics

Perform statistics on Mixpanel API data
Alternatives To Mixpanel Statistics
Project NameStarsDownloadsRepos Using ThisPackages Using ThisMost Recent CommitTotal ReleasesLatest ReleaseOpen IssuesLicenseLanguage
Growthbook4,330311 hours ago32July 20, 2022220mitTypeScript
Open Source Feature Flagging and A/B Testing Platform
Mixpanel Statistics23
9 years agoPython
Perform statistics on Mixpanel API data
App Stats3
5 years ago1JavaScript
[DEPRECATED] :bar_chart: Get statistics for your iOS apps
Alternatives To Mixpanel Statistics
Select To Compare


Alternative Project Comparisons
Readme

Mixpanel Statistics

A collection of Python scripts that pull API data from Mixpanel and perform statistics on the data.

Currently supported: - Correlation Analysis - Regression Analysis

Setup

Retrieve your API key and secret from Mixpanel API Information (http://mixpanel.com/user/account/#info). Set the variables in your shell:

export MIXPANEL_API_KEY=klsj234kljSLDKFJl243jlksdjf
export MIXPANEL_API_SECRET=lkJSdlkj234lkjsdlfksjdflksjdf

Correlation Analysis

Correlation determines the relationship between two variables. To determine the correlation of different Mixpanel events, do:

./correlation.py [event1] [event2] [event3]...
./correlation.py success_view checkout_view checkout_error


Output
==============================================================================
Correlation coefficients
checkout_view	x	checkout_error:	0.600231
checkout_view	x	success_view:	0.806892
checkout_error	x	success_view:	0.469129

Regression Analysis

Regression analysis studies the relationship between a dependent variable and other independent variables. To perform regression analysis on your Mixpanel events, do:

./regression.py [dependent_var] [independent_var1] [independent_var2]
./regression.py success_view checkout_view checkout_error

Output
==============================================================================
Dependent Variable: success_view
Method: Least Squares
Date:  Sun, 10 Jan 2010
Time:  12:23:16
# obs:                  60
# variables:         3
==============================================================================
variable     coefficient     std. Error      t-statistic     prob.
==============================================================================
const           1.151644      0.767227      1.501047      0.138863
checkout_view           0.049232      0.005862      8.398709      0.000000
checkout_error          -0.032332      0.133101     -0.242911      0.808946
==============================================================================
Models stats                         Residual stats
==============================================================================
R-squared             0.651435         Durbin-Watson stat   2.219304
Adjusted R-squared    0.639205         Omnibus stat         6.593467
F-statistic           53.263875         Prob(Omnibus stat)   0.037004
Prob (F-statistic)    0.000000         JB stat              5.678402
Log likelihood       -160.875422         Prob(JB)             0.058472
AIC criterion         5.462514         Skew                 0.649233
BIC criterion         5.567231         Kurtosis             3.765081
==============================================================================
Regression equation for response variable 'success_view'

success_view = 1.15164371922 + 0.04923(checkout_view) + -0.03233(checkout_error)

Contact

Web: http://bradjasper.com
Twitter: @bradjasper
Email: [email protected]

Popular Mixpanel Projects
Popular Statistics Projects
Popular Companies Categories
Related Searches

Get A Weekly Email With Trending Projects For These Categories
No Spam. Unsubscribe easily at any time.
Python
Statistics
Mixpanel