Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Darknet | 20,304 | 2 months ago | n,ull | other | C | |||||
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet ) | ||||||||||
Cvpr2023 Paper Code Interpretation | 11,221 | 8 hours ago | 38 | |||||||
cvpr2022/cvpr2021/cvpr2020/cvpr2019/cvpr2018/cvpr2017 论文/代码/解读/直播合集,极市团队整理 | ||||||||||
Cvpr2023 Papers With Code | 10,861 | 7 days ago | 5 | |||||||
CVPR 2023 论文和开源项目合集 | ||||||||||
Cvat | 9,078 | 5 hours ago | 2 | September 08, 2022 | 475 | mit | TypeScript | |||
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. | ||||||||||
Computervision Recipes | 8,817 | 2 months ago | 65 | mit | Jupyter Notebook | |||||
Best Practices, code samples, and documentation for Computer Vision. | ||||||||||
Ailab | 7,171 | 4 months ago | 75 | mit | C# | |||||
Experience, Learn and Code the latest breakthrough innovations with Microsoft AI | ||||||||||
Pytorch Grad Cam | 6,939 | 1 | 20 days ago | 25 | May 20, 2022 | 62 | mit | Python | ||
Advanced AI Explainability for computer vision. Support for CNNs, Vision Transformers, Classification, Object detection, Segmentation, Image similarity and more. | ||||||||||
Awesome Object Detection | 6,707 | a year ago | 6 | |||||||
Awesome Object Detection based on handong1587 github: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html | ||||||||||
Jetson Inference | 6,243 | a day ago | 938 | mit | C++ | |||||
Hello AI World guide to deploying deep-learning inference networks and deep vision primitives with TensorRT and NVIDIA Jetson. | ||||||||||
Autogluon | 5,525 | 3 hours ago | 222 | apache-2.0 | Python | |||||
AutoGluon: AutoML for Image, Text, Time Series, and Tabular Data |
A utility for generating heatmaps of YOLOv5 ultralytics/yolov5 using Layerwise Relevance Propagation (LRP/CRP). Pytorch implementation based on: moboehle/Pytorch-LRP
git clone https://github.com/akarasman/yolo-heatmaps/
cd yolo-heatmaps
pip install -r requirements.txt
python3 explain.py --source=data/images/so-and-so.jpg --weights=yolov5s.pt --explain-class='person'
Run results saved to runs/explain/exp(# of run)
# explain.py is built on detect.py module from YOLOv5, lrp options are :
--power POWER Power exponent applied to weights and inputs
--contrastive Use contrastive relevance (CRP)
--b1 B1 Visualization parameter for CRP - multiplier of primal part
--b2 B2 Visualization parameter for CRP - multiplier of dual part
--explain-class EXPLAIN_CLASS
Class to explain
--conf Confidence threshold on object
--max-class-only Max class only
--box-xywh BOX_XYWH [BOX_XYWH ...]
Box to restrict investigation (X,Y,W,H format)
--smooth-ks SMOOTH_KS
Box to restrict investigation (X,Y,W,H format)
--box-xyxy BOX_XYXY [BOX_XYXY ...]
Box to restrict investigation (X,Y,X,Y format)
--cmap CMAP Explanation color map (default set to seismic/magma when contrastive / non-contrastive
Current version only supports YOLOv5s-x models.
Please cite our paper if you plan on using code from this repository for your work
@inproceedings{inproceedings,
author = {Karasmanoglou, Apostolos and Antonakakis, Marios and Zervakis, Michalis},
year = {2022},
month = {06},
pages = {1-6},
title = {Heatmap-based Explanation of YOLOv5 Object Detection with Layer-wise Relevance Propagation},
doi = {10.1109/IST55454.2022.9827744}
}