Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Pytorch Cyclegan And Pix2pix | 20,036 | 4 months ago | 493 | other | Python | |||||
Image-to-Image Translation in PyTorch | ||||||||||
Insightface | 18,286 | 1 | 9 | a day ago | 28 | December 17, 2022 | 982 | mit | Python | |
State-of-the-art 2D and 3D Face Analysis Project | ||||||||||
Datasets | 17,218 | 9 | 540 | 20 hours ago | 69 | July 31, 2023 | 596 | apache-2.0 | Python | |
🤗 The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools | ||||||||||
Vision | 14,587 | 2,306 | 2,088 | a day ago | 37 | May 08, 2023 | 941 | bsd-3-clause | Python | |
Datasets, Transforms and Models specific to Computer Vision | ||||||||||
Cvat | 10,160 | 2 | 3 days ago | 11 | July 28, 2023 | 546 | mit | TypeScript | ||
Annotate better with CVAT, the industry-leading data engine for machine learning. Used and trusted by teams at any scale, for data of any scale. | ||||||||||
Deeplake | 6,911 | 11 | a day ago | 93 | August 05, 2023 | 62 | mpl-2.0 | Python | ||
Database for AI. Store Vectors, Images, Texts, Videos, etc. Use with LLMs/LangChain. Store, query, version, & visualize any AI data. Stream data in real-time to PyTorch/TensorFlow. https://activeloop.ai | ||||||||||
Techniques | 6,889 | 11 days ago | 1 | apache-2.0 | ||||||
Techniques for deep learning with satellite & aerial imagery | ||||||||||
Tts | 6,557 | 9 months ago | 7 | mpl-2.0 | Jupyter Notebook | |||||
:robot: :speech_balloon: Deep learning for Text to Speech (Discussion forum: https://discourse.mozilla.org/c/tts) | ||||||||||
Transformers Tutorials | 5,688 | 3 days ago | 210 | mit | Jupyter Notebook | |||||
This repository contains demos I made with the Transformers library by HuggingFace. | ||||||||||
Yet Another Efficientdet Pytorch | 4,892 | 2 years ago | 325 | lgpl-3.0 | Jupyter Notebook | |||||
The pytorch re-implement of the official efficientdet with SOTA performance in real time and pretrained weights. |
Pytorch0.4.1 codes for InsightFace
IR-SE50 @ BaiduNetdisk, IR-SE50 @ Onedrive
LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|
0.9952 | 0.9962 | 0.9504 | 0.9622 | 0.9557 | 0.9107 | 0.9386 |
Mobilefacenet @ BaiduNetDisk, Mobilefacenet @ OneDrive
LFW(%) | CFP-FF(%) | CFP-FP(%) | AgeDB-30(%) | calfw(%) | cplfw(%) | vgg2_fp(%) |
---|---|---|---|---|---|---|
0.9918 | 0.9891 | 0.8986 | 0.9347 | 0.9402 | 0.866 | 0.9100 |
clone
git clone https://github.com/TropComplique/mtcnn-pytorch.git
Provide the face images your want to detect in the data/face_bank folder, and guarantee it have a structure like following:
data/facebank/
---> id1/
---> id1_1.jpg
---> id2/
---> id2_1.jpg
---> id3/
---> id3_1.jpg
---> id3_2.jpg
If more than 1 image appears in one folder, an average embedding will be calculated
download the refined dataset: (emore recommended)
Note: If you use the refined MS1M dataset and the cropped VGG2 dataset, please cite the original papers.
after unzip the files to 'data' path, run :
python prepare_data.py
after the execution, you should find following structure:
faces_emore/
---> agedb_30
---> calfw
---> cfp_ff
---> cfp_fp
---> cfp_fp
---> cplfw
--->imgs
---> lfw
---> vgg2_fp
2 to take a picture, run
python take_pic.py -n name
press q to take a picture, it will only capture 1 highest possibility face if more than 1 person appear in the camera
3 or you can put any preexisting photo into the facebank directory, the file structure is as following:
- facebank/
name1/
photo1.jpg
photo2.jpg
...
name2/
photo1.jpg
photo2.jpg
...
.....
if more than 1 image appears in the directory, average embedding will be calculated
4 to start
python face_verify.py
```
python infer_on_video.py -f [video file name] -s [save file name]
```
the video file should be inside the data/face_bank folder
```
python train.py -b [batch_size] -lr [learning rate] -e [epochs]
# python train.py -net mobilefacenet -b 200 -w 4
```