Project Name | Stars | Downloads | Repos Using This | Packages Using This | Most Recent Commit | Total Releases | Latest Release | Open Issues | License | Language |
---|---|---|---|---|---|---|---|---|---|---|
Fl_chart | 5,616 | 5 days ago | 205 | mit | Dart | |||||
FL Chart is a highly customizable Flutter chart library that supports Line Chart, Bar Chart, Pie Chart, Scatter Chart, and Radar Chart. | ||||||||||
Ogb | 1,674 | 13 | 2 days ago | 16 | February 23, 2022 | 16 | mit | Python | ||
Benchmark datasets, data loaders, and evaluators for graph machine learning | ||||||||||
Cogdl | 1,437 | 1 | a month ago | 16 | June 01, 2022 | 34 | mit | Python | ||
CogDL: A Comprehensive Library for Graph Deep Learning (WWW 2023) | ||||||||||
Graph2vec | 791 | 7 months ago | 1 | gpl-3.0 | Python | |||||
A parallel implementation of "graph2vec: Learning Distributed Representations of Graphs" (MLGWorkshop 2017). | ||||||||||
Stgcn_ijcai 18 | 723 | 3 months ago | 9 | bsd-2-clause | Python | |||||
[IJCAI'18] Spatio-Temporal Graph Convolutional Networks | ||||||||||
Knowledge Graph Learning | 662 | 4 months ago | 336 | mit | ||||||
A curated list of awesome knowledge graph tutorials, projects and communities. | ||||||||||
Sr Gnn | 607 | 2 years ago | 6 | Python | ||||||
[AAAI 2019] Source code and datasets for "Session-based Recommendation with Graph Neural Networks" | ||||||||||
Conve | 574 | 8 months ago | 22 | mit | Python | |||||
Convolutional 2D Knowledge Graph Embeddings resources | ||||||||||
Knowledge_graph_attention_network | 434 | 3 years ago | 24 | mit | Python | |||||
KGAT: Knowledge Graph Attention Network for Recommendation, KDD2019 | ||||||||||
Cleora | 434 | a month ago | 12 | other | Jupyter Notebook | |||||
Cleora AI is a general-purpose model for efficient, scalable learning of stable and inductive entity embeddings for heterogeneous relational data. |
Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training.
GCC is a contrastive learning framework that implements unsupervised structural graph representation pre-training and achieves state-of-the-art on 10 datasets on 3 graph mining tasks.
pip install -r requirements.txt
conda install -c conda-forge rdkit=2019.09.2
.python scripts/download.py --url https://drive.google.com/open?id=1JCHm39rf7HAJSp-1755wa32ToHCn2Twz --path data --fname small.bin
# For regions where Google is not accessible, use
# python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/b37eed70207c468ba367/?dl=1 --path data --fname small.bin
Pretrain E2E with K = 255
:
bash scripts/pretrain.sh <gpu> --batch-size 256
Pretrain MoCo with K = 16384; m = 0.999
:
bash scripts/pretrain.sh <gpu> --moco --nce-k 16384
Instead of pretraining from scratch, you can download our pretrained models.
python scripts/download.py --url https://drive.google.com/open?id=1lYW_idy9PwSdPEC7j9IH5I5Hc7Qv-22- --path saved --fname pretrained.tar.gz
# For regions where Google is not accessible, use
# python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/cabec37002a9446d9b20/?dl=1 --path saved --fname pretrained.tar.gz
python scripts/download.py --url https://drive.google.com/open?id=12kmPV3XjVufxbIVNx5BQr-CFM9SmaFvM --path data --fname downstream.tar.gz
# For regions where Google is not accessible, use
# python scripts/download.py --url https://cloud.tsinghua.edu.cn/f/2535437e896c4b73b6bb/?dl=1 --path data --fname downstream.tar.gz
Generate embeddings on multiple datasets with
bash scripts/generate.sh <gpu> <load_path> <dataset_1> <dataset_2> ...
For example:
bash scripts/generate.sh 0 saved/Pretrain_moco_True_dgl_gin_layer_5_lr_0.005_decay_1e-05_bsz_32_hid_64_samples_2000_nce_t_0.07_nce_k_16384_rw_hops_256_restart_prob_0.8_aug_1st_ft_False_deg_16_pos_32_momentum_0.999/current.pth usa_airport kdd imdb-binary
Run baselines on multiple datasets with bash scripts/node_classification/baseline.sh <hidden_size> <baseline:prone/graphwave> usa_airport h-index
.
Evaluate GCC on multiple datasets:
bash scripts/generate.sh <gpu> <load_path> usa_airport h-index
bash scripts/node_classification/ours.sh <load_path> <hidden_size> usa_airport h-index
Finetune GCC on multiple datasets:
bash scripts/finetune.sh <load_path> <gpu> usa_airport
Note this finetunes the whole network and will take much longer than the freezed experiments above.
bash scripts/generate.sh <gpu> <load_path> imdb-binary imdb-multi collab rdt-b rdt-5k
bash scripts/graph_classification/ours.sh <load_path> <hidden_size> imdb-binary imdb-multi collab rdt-b rdt-5k
bash scripts/finetune.sh <load_path> <gpu> imdb-binary
Run baseline (graphwave) on multiple datasets with bash scripts/similarity_search/baseline.sh <hidden_size> graphwave kdd_icdm sigir_cikm sigmod_icde
.
Run GCC:
bash scripts/generate.sh <gpu> <load_path> kdd icdm sigir cikm sigmod icde
bash scripts/similarity_search/ours.sh <load_path> <hidden_size> kdd_icdm sigir_cikm sigmod_icde
If this still fails, please upgrade your machine :). In the meanwhile, you can still download our pretrained model and evaluate it on downstream tasks.
If you use GCC in your research or wish to refer to the baseline results, please use the following BibTeX.
@article{qiu2020gcc,
title={GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training},
author={Qiu, Jiezhong and Chen, Qibin and Dong, Yuxiao and Zhang, Jing and Yang, Hongxia and Ding, Ming and Wang, Kuansan and Tang, Jie},
journal={arXiv preprint arXiv:2006.09963},
year={2020}
}
Part of this code is inspired by Yonglong Tian et al.'s CMC: Contrastive Multiview Coding.