Awesome Open Source
Awesome Open Source

Spark NLP Models

build Maven Central PyPI version Anaconda-Cloud License

This repository is deprecated. Please use Models Hub

Caution: This repo is not maintained anymore. Please visit https://nlp.johnsnowlabs.com/models to keep track of Spark NLP models.


We use this repository to maintain our releases of pre-trained pipelines and models for the Spark NLP library.

Project's website

Take a look at our official Spark NLP page: http://nlp.johnsnowlabs.com/ for user documentation and examples

Slack community channel

Join Slack

Open Source

Spark NLP comes with 1100+ pretrained pipelines and models in more than 192+ languages.

Some of the selected languages: Afrikaans, Arabic, Armenian, Basque, Bengali, Breton, Bulgarian, Catalan, Czech, Dutch, English, Esperanto, Finnish, French, Galician, German, Greek, Hausa, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Latin, Latvian, Marathi, Norwegian, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Somali, Southern Sotho, Spanish, Swahili, Swedish, Tswana, Turkish, Ukrainian, Zulu

Please check out our Models Hub for the full and updated list of pre-trained models & pipelines with examples, demo, benchmark, and more

Licensed Enterprise

It is required to specify 3rd argument to pretrained(name, lang, location) function to add the location of these

Pretrained Models - Spark NLP For Healthcare

English Language, Clinical/Models Location

{Model}.pretrained({Name}, 'en', 'clinical/models')

Model Name Build
AssertionDLModel assertion_dl_large 2.5.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
AssertionDLModel assertion_dl 2.4.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
AssertionDLModel assertion_dl_healthcare 2.5.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
AssertionDLModel assertion_dl_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
AssertionLogRegModel assertion_ml 2.4.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_cpt_clinical 2.4.5 ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10cm_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10cm_diseases_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10cm_injuries_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10cm_musculoskeletal_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10cm_neoplasms_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10cm_puerile_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icd10pcs_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_icdo_clinical 2.4.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_loinc_clinical 2.5.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_rxnorm_cd_clinical 2.5.1 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_rxnorm_sbd_clinical 2.5.1 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_rxnorm_scd_clinical 2.5.1 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ChunkEntityResolverModel chunkresolve_snomed_findings_clinical 2.5.1 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_cpt 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_icd10cm 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_icd10pcs 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_icdo 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_rxnorm 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_snomed_auxConcepts 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_snomed_auxConcepts_int 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_snomed_findings 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceEntityResolverModel sbiobertresolve_snomed_findings_int 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
ContextSpellCheckerModel spellcheck_clinical 2.4.2 ๐Ÿ“‹ ๐Ÿ’พ
DeIdentificationModel deidentify_rb_no_regex 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
DeIdentificationModel deidentify_rb 2.0.2 ๐Ÿ“‹ ๐Ÿ’พ
DeIdentificatoinModel deidentify_large 2.5.1 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_anatomy 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_bionlp 2.4.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_cellular 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_clinical_large 2.5.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_clinical 2.4.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_deid_enriched 2.5.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_deid_large 2.5.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_diseases 2.4.4 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_diseases_large 2.6.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_drugs 2.4.4 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_events_clinical 2.5.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_healthcare 2.4.4 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_jsl_enriched 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_jsl 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_medmentions_coarse 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_posology_large 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_drugs_large 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_posology_small 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_posology 2.4.4 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_risk_factors 2.4.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_human_phenotype_go_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_human_phenotype_gene_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_chemprot_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_ade_clinical 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_ade_healthcare 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_ade_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_ade_clinicalbert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_bacterial_species 2.6.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_chemicals 2.6.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_clinical_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_anatomy_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_bionlp_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_cellular_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_deid_enriched_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_diseases_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_events_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_jsl_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_jsl_enriched_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_chemprot_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_human_phenotype_gene_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_human_phenotype_go_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_posology_large_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_posology_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_risk_factors_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_anatomy_coarse_biobert 2.6.1 ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_anatomy_coarse 2.6.1 ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_deid_sd_large 2.6.3 ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_aspect_based_sentiment 2.6.2 ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_financial_contract 2.6.3 ๐Ÿ“‹ ๐Ÿ’พ
ClassifierDLModel classifierdl_ade_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ClassifierDLModel classifierdl_ade_conversational_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ClassifierDLModel classifierdl_ade_clinicalbert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
ClassifierDLModel classifierdl_pico_biobert 2.6.2 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
PerceptronModel pos_clinical 2.0.2 ๐Ÿ“‹ ๐Ÿ’พ
RelationExtractionModel re_clinical 2.5.5 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
RelationExtractionModel re_posology 2.5.5 ๐Ÿ” ๐Ÿ“‹
RelationExtractionModel re_temporal_events_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
RelationExtractionModel re_temporal_events_enriched_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
RelationExtractionModel re_human_phenotype_gene_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
RelationExtractionModel re_drug_drug_interaction_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
RelationExtractionModel re_chemprot_clinical 2.6.0 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
TextMatcherModel textmatch_cpt_token 2.4.5 ๐Ÿ“‹ ๐Ÿ’พ
TextMatcherModel textmatch_icdo_ner 2.4.5 ๐Ÿ“‹ ๐Ÿ’พ
BertSentenceEmbeddings sbiobert_base_cased_mli 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
BertSentenceEmbeddings sbluebert_base_uncased_mli 2.6.4 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_clinical 2.4.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_healthcare_100d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_healthcare 2.4.4 ๐Ÿ“‹ ๐Ÿ’พ
SentenceDetectorDLModel sentence_detector_dl_healthcare 2.6.2 ๐Ÿ“‹ ๐Ÿ’พ

Spanish Language, Clinical/Models Location

{Model}.pretrained({Name}, 'es', 'clinical/models')

Model Name Build
NerDLModel ner_diag_proc 2.5.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
NerDLModel ner_neoplasms 2.5.3 ๐Ÿ” ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_scielo_150d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_scielo_300d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_scielo_50d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_scielowiki_150d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_scielowiki_300d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ
WordEmbeddingsModel embeddings_scielowiki_50d 2.5.0 ๐Ÿ“‹ ๐Ÿ’พ

Pretrained Healthcare Pipelines

PretrainedPipeline({Name}, 'en', 'clinical/models')

Pipeline Name Build lang Description Offline
Explain Clinical Document (type-1) explain_clinical_doc_carp 2.6.0 en a pipeline with ner_clinical, assertion_dl, re_clinical and ner_posology. It will extract clinical and medication entities, assign assertion status and find relationships between clinical entities. Download
Explain Clinical Document (type-2) explain_clinical_doc_era 2.6.0 en a pipeline with ner_clinical_events, assertion_dl and re_temporal_events_clinical. It will extract clinical entities, assign assertion status and find temporal relationships between clinical entities. Download
Explain Clinical Document (type-3) recognize_entities_posology 2.6.0 en a pipeline with ner_posology. It will only extract medication entities. Download
Explain Clinical Document (type-4) explain_clinical_doc_ade 2.6.2 en a pipeline for Adverse Drug Events (ADE) with ner_ade_biobert, assertiondl_biobert and classifierdl_ade_conversational_biobert. It will extract ADE and DRUG clinical entities, assigen assertion status to ADE entities, and then assign ADE status to a text(True means ADE, False means not related to ADE). Download

German Models

Model Name Build lang Offline
NER Healthcare ner_healthcare 2.6.0 de Download
NER Healthcare ner_healthcare_slim 2.6.0 de Download
Entity Resolver ICD10GM chunkresolve_ICD10GM 2.6.0 de Download
Entity Resolver ICD10GM chunkresolve_ICD10GM_2021 2.6.0 de Download
WordEmbeddings w2v_cc_300d 2.6.0 de Download
NER Legal ner_legal 2.6.0 de Download
NER Traffic ner_traffic 2.6.0 de Download

Contact

[email protected]

John Snow Labs

https://johnsnowlabs.com



Alternative Project Comparisons
Related Awesome Lists
Top Programming Languages

Get A Weekly Email With Trending Projects For These Topics
No Spam. Unsubscribe easily at any time.
Jupyter Notebook (171,951)ย 
Machine Learning (39,860)ย 
Deep Learning (38,642)ย 
Pipeline (15,571)ย 
Nlp (15,566)ย 
Natural Language Processing (15,566)ย 
Spark (10,782)ย 
Medium (3,861)ย 
Recognizer (1,024)ย 
Nlu (765)ย 
Natural Language Understanding (390)ย 
Spark Nlp (11)ย